Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
from qdrant_client import QdrantClient
|
8 |
+
from transformers import ColQwen2, ColQwen2Processor
|
9 |
+
|
10 |
+
# Initialize ColPali model and processor
|
11 |
+
model_name = "vidore/colqwen2-v0.1"
|
12 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu" # You can change this to "mps" for Apple Silicon if needed
|
13 |
+
colpali_model = ColQwen2.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
device_map=device,
|
17 |
+
)
|
18 |
+
colpali_processor = ColQwen2Processor.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
)
|
21 |
+
|
22 |
+
# Initialize Qdrant client
|
23 |
+
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
24 |
+
qdrant_client = QdrantClient(url="https://davanstrien-qdrant-test.hf.space",
|
25 |
+
port=None, api_key=QDRANT_API_KEY, timeout=10)
|
26 |
+
|
27 |
+
collection_name = "your_collection_name" # Replace with your actual collection name
|
28 |
+
|
29 |
+
def search_images_by_text(query_text, top_k=5):
|
30 |
+
# Process and encode the text query
|
31 |
+
with torch.no_grad():
|
32 |
+
batch_query = colpali_processor.process_queries([query_text]).to(colpali_model.device)
|
33 |
+
query_embedding = colpali_model(**batch_query)
|
34 |
+
|
35 |
+
# Convert the query embedding to a list of vectors
|
36 |
+
multivector_query = query_embedding[0].cpu().float().numpy().tolist()
|
37 |
+
|
38 |
+
# Search in Qdrant
|
39 |
+
search_result = qdrant_client.query_points(
|
40 |
+
collection_name=collection_name,
|
41 |
+
query=multivector_query,
|
42 |
+
limit=top_k,
|
43 |
+
timeout=800,
|
44 |
+
)
|
45 |
+
|
46 |
+
return search_result
|
47 |
+
|
48 |
+
def modify_iiif_url(url, width, height):
|
49 |
+
parts = url.split('/')
|
50 |
+
size_index = -3
|
51 |
+
parts[size_index] = f"{width},{height}"
|
52 |
+
return '/'.join(parts)
|
53 |
+
|
54 |
+
def search_and_display(query, top_k, width, height):
|
55 |
+
results = search_images_by_text(query, top_k)
|
56 |
+
images = []
|
57 |
+
captions = []
|
58 |
+
|
59 |
+
for result in results.points:
|
60 |
+
modified_url = modify_iiif_url(result.payload['image_url'], width, height)
|
61 |
+
response = requests.get(modified_url)
|
62 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
63 |
+
images.append(img)
|
64 |
+
captions.append(f"Score: {result.score:.2f}")
|
65 |
+
|
66 |
+
return images, captions
|
67 |
+
|
68 |
+
# Define Gradio interface
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=search_and_display,
|
71 |
+
inputs=[
|
72 |
+
gr.Textbox(label="Search Query"),
|
73 |
+
gr.Slider(minimum=1, maximum=20, step=1, label="Number of Results", value=5),
|
74 |
+
gr.Slider(minimum=100, maximum=1000, step=50, label="Image Width", value=300),
|
75 |
+
gr.Slider(minimum=100, maximum=1000, step=50, label="Image Height", value=300)
|
76 |
+
],
|
77 |
+
outputs=[
|
78 |
+
gr.Gallery(label="Search Results", show_label=False, columns=5, height="auto"),
|
79 |
+
gr.JSON(label="Captions")
|
80 |
+
],
|
81 |
+
title="Image Search with IIIF Resizing",
|
82 |
+
description="Enter a text query to search for images. You can adjust the number of results and the size of the returned images."
|
83 |
+
)
|
84 |
+
|
85 |
+
# Launch the Gradio interface
|
86 |
+
iface.launch()
|