disentangled-image-editing-final-project
/
ContraCLIP
/lib
/evaluation
/celeba_attributes
/celeba_attr_predictor.py
import json | |
import torch | |
import torch.nn as nn | |
import torch.utils.model_zoo as model_zoo | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=(3, 3), stride=(stride, stride), padding=1, bias=False) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=(1, 1), stride=(stride, stride), bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = conv1x1(inplanes, planes) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes, stride) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = conv1x1(planes, planes * self.expansion) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class fc_block(nn.Module): | |
def __init__(self, inplanes, planes, drop_rate=0.15): | |
super(fc_block, self).__init__() | |
self.fc = nn.Linear(inplanes, planes) | |
self.bn = nn.BatchNorm1d(planes) | |
if drop_rate > 0: | |
self.dropout = nn.Dropout(drop_rate) | |
self.relu = nn.ReLU(inplace=True) | |
self.drop_rate = drop_rate | |
def forward(self, x): | |
x = self.fc(x) | |
x = self.bn(x) | |
if self.drop_rate > 0: | |
x = self.dropout(x) | |
x = self.relu(x) | |
return x | |
class ResNet(nn.Module): | |
def __init__(self, | |
block, | |
layers, | |
attr_file, | |
zero_init_residual=False, | |
dropout_rate=0): | |
super(ResNet, self).__init__() | |
self.inplanes = 64 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.stem = fc_block(512 * block.expansion, 512, dropout_rate) | |
# Construct classifier heads according to the number of values of each attribute | |
self.attr_file = attr_file | |
with open(self.attr_file, 'r') as f: | |
attr_f = json.load(f) | |
self.attr_info = attr_f['attr_info'] | |
for idx, (key, val) in enumerate(self.attr_info.items()): | |
num_val = int(len(val["value"])) | |
setattr(self, 'classifier' + str(key).zfill(2) + val["name"], | |
nn.Sequential(fc_block(512, 256, dropout_rate), nn.Linear(256, num_val))) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each | |
# residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) | |
elif isinstance(m, BasicBlock): | |
nn.init.constant_(m.bn2.weight, 0) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential(conv1x1(self.inplanes, planes * block.expansion, stride), | |
nn.BatchNorm2d(planes * block.expansion)) | |
layers = [block(self.inplanes, planes, stride, downsample)] | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
x = self.stem(x) | |
predictions = {} | |
for idx, (key, val) in enumerate(self.attr_info.items()): | |
classifier = getattr(self, 'classifier' + str(key).zfill(2) + val["name"]) | |
predictions.update({val["name"]: classifier(x)}) | |
return predictions | |
def celeba_attr_predictor(attr_file, pretrained='models/pretrained/celeba_attributes/predictor_1024.pth.tar'): | |
model = ResNet(Bottleneck, [3, 4, 6, 3], attr_file=attr_file) | |
init_pretrained_weights(model, 'https://download.pytorch.org/models/resnet50-19c8e357.pth') | |
model.load_state_dict(torch.load(pretrained)['state_dict'], strict=True) | |
return model | |
def init_pretrained_weights(model, model_url): | |
"""Initialize model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept | |
unchanged. | |
""" | |
pretrain_dict = model_zoo.load_url(model_url) | |
model_dict = model.state_dict() | |
pretrain_dict = { | |
k: v | |
for k, v in pretrain_dict.items() | |
if k in model_dict and model_dict[k].size() == v.size() | |
} | |
model_dict.update(pretrain_dict) | |
model.load_state_dict(model_dict) | |