File size: 37,893 Bytes
8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 5e94425 8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import argparse
import os
import os.path as osp
import torch
from torch import nn
import torch.nn.functional as F
from PIL import Image, ImageDraw
import json
from torchvision.transforms import ToPILImage
from lib import SupportSets, GENFORCE_MODELS, update_progress, update_stdout, STYLEGAN_LAYERS
from models.load_generator import load_generator
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.manifold import TSNE
class DataParallelPassthrough(nn.DataParallel):
def __getattr__(self, name):
try:
return super(DataParallelPassthrough, self).__getattr__(name)
except AttributeError:
return getattr(self.module, name)
class ModelArgs:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def tensor2image(tensor, img_size=None, adaptive=False):
# Squeeze tensor image
tensor = tensor.squeeze(dim=0)
if adaptive:
tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
if img_size:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8)).resize((img_size, img_size))
else:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))
else:
tensor = (tensor + 1) / 2
tensor.clamp(0, 1)
if img_size:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8)).resize((img_size, img_size))
else:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))
def one_hot(dims, value, idx):
vec = torch.zeros(dims)
vec[idx] = value
return vec
def create_strip(image_list, N=5, strip_height=256):
"""Create strip of images across a given latent path.
Args:
image_list (list) : list of images (PIL.Image.Image) across a given latent path
N (int) : number of images in strip
strip_height (int) : strip height in pixels -- its width will be N * strip_height
Returns:
transformed_images_strip (PIL.Image.Image) : strip PIL image
"""
step = len(image_list) // N + 1
transformed_images_strip = Image.new('RGB', (N * strip_height, strip_height))
for i in range(N):
j = i * step if i * step < len(image_list) else len(image_list) - 1
transformed_images_strip.paste(image_list[j].resize((strip_height, strip_height)), (i * strip_height, 0))
return transformed_images_strip
def create_gif(image_list, gif_height=256):
"""Create gif frames for images across a given latent path.
Args:
image_list (list) : list of images (PIL.Image.Image) across a given latent path
gif_height (int) : gif height in pixels -- its width will be N * gif_height
Returns:
transformed_images_gif_frames (list): list of gif frames in PIL (PIL.Image.Image)
"""
transformed_images_gif_frames = []
for i in range(len(image_list)):
# Create gif frame
gif_frame = Image.new('RGB', (2 * gif_height, gif_height))
gif_frame.paste(image_list[len(image_list) // 2].resize((gif_height, gif_height)), (0, 0))
gif_frame.paste(image_list[i].resize((gif_height, gif_height)), (gif_height, 0))
# Draw progress bar
draw_bar = ImageDraw.Draw(gif_frame)
bar_h = 12
bar_colour = (252, 186, 3)
draw_bar.rectangle(xy=((gif_height, gif_height - bar_h),
((1 + (i / len(image_list))) * gif_height, gif_height)),
fill=bar_colour)
transformed_images_gif_frames.append(gif_frame)
return transformed_images_gif_frames
def visualize_latent_space(tsne_latent_codes, semantic_dipoles, output_dir, save_filename="latent_space_tsne.png", shift_steps=16):
"""
Visualize the t-SNE reduced latent space with minimal annotations.
Args:
tsne_latent_codes (np.ndarray): The 3D latent codes after t-SNE transformation.
semantic_dipoles (list): List of semantic directions (labels) for paths.
shift_steps (int): Number of positive/negative steps along each path.
output_dir (str): Directory to save the generated plot.
save_filename (str): Name of the file to save the plot.
"""
fig = plt.figure(figsize=(16, 12)) # Larger figure for clarity
ax = fig.add_subplot(111, projection='3d')
num_paths = len(semantic_dipoles) # Each dipole represents one path
cmap = plt.cm.get_cmap('tab10', num_paths)
for i in range(num_paths):
# Indices for the path in tsne_latent_codes
start_idx = i * (2 * shift_steps + 1)
pos_idx = start_idx + shift_steps # Positive endpoint
neg_idx = start_idx + 2 * shift_steps # Negative endpoint
# Extract path points
path_indices = list(range(start_idx, neg_idx + 1))
path_coords = tsne_latent_codes[path_indices]
# Plot the entire path (all intermediate points in a single color)
ax.plot(
path_coords[:, 0], path_coords[:, 1], path_coords[:, 2],
color=cmap(i),
linewidth=2
)
# Extract positive and negative endpoint coordinates
pos_coords = tsne_latent_codes[pos_idx]
neg_coords = tsne_latent_codes[neg_idx]
# Plot positive and negative endpoints
ax.scatter(*pos_coords, color=cmap(i), s=100, label=f"{semantic_dipoles[i][0]} → {semantic_dipoles[i][1]}")
ax.scatter(*neg_coords, color=cmap(i), s=100)
# Add legend
ax.legend(loc='best', fontsize=10)
# Set titles and labels
ax.set_title("t-SNE Latent Space Visualization")
ax.set_xlabel("t-SNE Dimension 1")
ax.set_ylabel("t-SNE Dimension 2")
ax.set_zlabel("t-SNE Dimension 3")
# Save the plot
os.makedirs(output_dir, exist_ok=True)
save_path = osp.join(output_dir, save_filename)
plt.savefig(save_path, dpi=300, bbox_inches="tight")
print(f"Visualization saved to {save_path}")
def main():
"""ContraCLIP -- Latent space traversal script.
A script for traversing the latent space of a pre-trained GAN generator through paths defined by the warpings of
a set of pre-trained support vectors. Latent codes are drawn from a pre-defined collection via the `--pool`
argument. The generated images are stored under `results/` directory.
Options:
================================================================================================================
-v, --verbose : set verbose mode on
================================================================================================================
--exp : set experiment's model dir, as created by `train.py`, i.e., it should contain a subdirectory
`models/` with two files, namely `reconstructor.pt` and `support_sets.pt`, which
contain the weights for the reconstructor and the support sets, respectively, and an `args.json`
file that contains the arguments the model has been trained with.
--pool : directory of pre-defined pool of latent codes (created by `sample_gan.py`)
--w-space : latent codes in the pool are in W/W+ space (typically as inverted codes of real images)
================================================================================================================
--shift-steps : set number of shifts to be applied to each latent code at each direction (positive/negative).
That is, the total number of shifts applied to each latent code will be equal to
2 * args.shift_steps.
--eps : set shift step magnitude for generating G(z'), where z' = z +/- eps * direction.
--shift-leap : set path shift leap (after how many steps to generate images)
--batch-size : set generator batch size (if not set, use the total number of images per path)
--img-size : set size of saved generated images (if not set, use the output size of the respective GAN
generator)
--img-quality : JPEG image quality (max 95)
--gif : generate collated GIF images for all paths and all latent codes
--gif-height : set GIF image height -- width will be 2 * args.gif_height
--gif-fps : set number of frames per second for the generated GIF images
--strip : create traversal strip images
--strip-number : set number of images per strip
--strip-height : set strip height -- width will be 2 * args.strip_height
================================================================================================================
--cuda : use CUDA (default)
--no-cuda : do not use CUDA
================================================================================================================
"""
parser = argparse.ArgumentParser(description="ContraCLIP latent space traversal script")
parser.add_argument('-v', '--verbose', action='store_true', help="set verbose mode on")
# ================================================================================================================ #
parser.add_argument('--w-space', action='store_true', help="latent codes are given in the W-space")
parser.add_argument('--exp', type=str, required=True, help="set experiment's model dir (created by `train.py`)")
parser.add_argument('--pool', type=str, required=True, help="directory of pre-defined pool of latent codes"
"(created by `sample_gan.py`)")
parser.add_argument('--shift-steps', type=int, default=16, help="set number of shifts per positive/negative path "
"direction")
parser.add_argument('--eps', type=float, default=0.2, help="set shift step magnitude")
parser.add_argument('--shift-leap', type=int, default=1,
help="set path shift leap (after how many steps to generate images)")
parser.add_argument('--batch-size', type=int, help="set generator batch size (if not set, use the total number of "
"images per path)")
parser.add_argument('--img-size', type=int, help="set size of saved generated images (if not set, use the output "
"size of the respective GAN generator)")
parser.add_argument('--img-quality', type=int, default=50, help="set JPEG image quality")
parser.add_argument('--strip', action='store_true', help="create traversal strip images")
parser.add_argument('--strip-number', type=int, default=9, help="set number of images per strip")
parser.add_argument('--strip-height', type=int, default=256, help="set strip height")
parser.add_argument('--gif', action='store_true', help="create GIF traversals")
parser.add_argument('--gif-height', type=int, default=256, help="set gif height")
parser.add_argument('--gif-fps', type=int, default=30, help="set gif frame rate")
# ================================================================================================================ #
parser.add_argument('--cuda', dest='cuda', action='store_true', help="use CUDA during training")
parser.add_argument('--no-cuda', dest='cuda', action='store_false', help="do NOT use CUDA during training")
parser.set_defaults(cuda=True)
# ================================================================================================================ #
# Parse given arguments
args = parser.parse_args()
# Check structure of `args.exp`
if not osp.isdir(args.exp):
raise NotADirectoryError("Invalid given directory: {}".format(args.exp))
# -- args.json file (pre-trained model arguments)
args_json_file = osp.join(args.exp, 'args.json')
if not osp.isfile(args_json_file):
raise FileNotFoundError("File not found: {}".format(args_json_file))
args_json = ModelArgs(**json.load(open(args_json_file)))
gan = args_json.__dict__["gan"]
stylegan_space = args_json.__dict__["stylegan_space"]
stylegan_layer = args_json.__dict__["stylegan_layer"] if "stylegan_layer" in args_json.__dict__ else None
truncation = args_json.__dict__["truncation"]
# TODO: Check if `--w-space` is valid
if args.w_space and (('stylegan' not in gan) or ('W' not in stylegan_space)):
raise NotImplementedError
# -- models directory (support sets and reconstructor, final or checkpoint files)
models_dir = osp.join(args.exp, 'models')
if not osp.isdir(models_dir):
raise NotADirectoryError("Invalid models directory: {}".format(models_dir))
# ---- Get all files of models directory
models_dir_files = [f for f in os.listdir(models_dir) if osp.isfile(osp.join(models_dir, f))]
# ---- Check for latent support sets (LSS) model file (final or checkpoint)
latent_support_sets_model = osp.join(models_dir, 'latent_support_sets.pt')
model_iter = ''
if not osp.isfile(latent_support_sets_model):
latent_support_sets_checkpoint_files = []
for f in models_dir_files:
if 'latent_support_sets-' in f:
latent_support_sets_checkpoint_files.append(f)
latent_support_sets_checkpoint_files.sort()
latent_support_sets_model = osp.join(models_dir, latent_support_sets_checkpoint_files[-1])
model_iter = '-{}'.format(latent_support_sets_checkpoint_files[-1].split('.')[0].split('-')[-1])
# -- Get prompt corpus list
with open(osp.join(models_dir, 'semantic_dipoles.json'), 'r') as f:
semantic_dipoles = json.load(f)
# semantic_directions = [f"{dipole[0]} → {dipole[1]}" for dipole in semantic_dipoles]
# Check given pool directory
pool = osp.join('experiments', 'latent_codes', gan, args.pool)
if not osp.isdir(pool):
raise NotADirectoryError("Invalid pool directory: {} -- Please run sample_gan.py to create it.".format(pool))
# CUDA
use_cuda = False
multi_gpu = False
if torch.cuda.is_available():
if args.cuda:
use_cuda = True
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if torch.cuda.device_count() > 1:
multi_gpu = True
else:
print("*** WARNING ***: It looks like you have a CUDA device, but aren't using CUDA.\n"
" Run with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
# Build GAN generator model and load with pre-trained weights
if args.verbose:
print("#. Build GAN generator model G and load with pre-trained weights...")
print(" \\__GAN generator : {} (res: {})".format(gan, GENFORCE_MODELS[gan][1]))
print(" \\__Pre-trained weights: {}".format(GENFORCE_MODELS[gan][0]))
G = load_generator(model_name=gan,
latent_is_w=('stylegan' in gan) and ('W' in args_json.__dict__["stylegan_space"]),
verbose=args.verbose).eval()
# Upload GAN generator model to GPU
if use_cuda:
G = G.cuda()
# Parallelize GAN generator model into multiple GPUs if available
if multi_gpu:
G = DataParallelPassthrough(G)
# Build latent support sets model LSS
if args.verbose:
print("#. Build Latent Support Sets model LSS...")
# Get support vector dimensionality
support_vectors_dim = G.dim_z
if ('stylegan' in gan) and (stylegan_space == 'W+'):
support_vectors_dim *= (stylegan_layer + 1)
LSS = SupportSets(num_support_sets=len(semantic_dipoles),
num_support_dipoles=args_json.__dict__["num_latent_support_dipoles"],
support_vectors_dim=support_vectors_dim,
jung_radius=1)
# Load pre-trained weights and set to evaluation mode
if args.verbose:
print(" \\__Pre-trained weights: {}".format(latent_support_sets_model))
LSS.load_state_dict(torch.load(latent_support_sets_model, map_location=lambda storage, loc: storage))
if args.verbose:
print(" \\__Set to evaluation mode")
LSS.eval()
# Upload support sets model to GPU
if use_cuda:
LSS = LSS.cuda()
# Set number of generative paths
num_gen_paths = LSS.num_support_sets
# Create output dir for generated images
out_dir = osp.join(args.exp, 'results', args.pool + model_iter,
'{}_{}_{}'.format(2 * args.shift_steps, args.eps, round(2 * args.shift_steps * args.eps, 3)))
os.makedirs(out_dir, exist_ok=True)
# Set default batch size
if args.batch_size is None:
args.batch_size = 2 * args.shift_steps + 1
## ============================================================================================================== ##
## ##
## [Latent Codes Pool] ##
## ##
## ============================================================================================================== ##
# Get latent codes from the given pool
if args.verbose:
print("#. Use latent codes from pool {}...".format(args.pool))
latent_codes_dirs = [dI for dI in os.listdir(pool) if os.path.isdir(os.path.join(pool, dI))]
latent_codes_dirs.sort()
latent_codes_list = [torch.load(osp.join(pool, subdir, 'latent_code_{}.pt'.format('w+' if args.w_space else 'z')),
map_location=lambda storage, loc: storage) for subdir in latent_codes_dirs]
# Get latent codes in torch Tensor format -- xs refers to z or w+ codes
xs = torch.cat(latent_codes_list)
if use_cuda:
xs = xs.cuda()
num_of_latent_codes = xs.size()[0]
## ============================================================================================================== ##
## ##
## [Latent space traversal] ##
## ##
## ============================================================================================================== ##
if args.verbose:
print("#. Traverse latent space...")
print(" \\__Experiment : {}".format(osp.basename(osp.abspath(args.exp))))
print(" \\__Number of test latent codes : {}".format(num_of_latent_codes))
print(" \\__Test latent codes shape : {}".format(xs.shape))
print(" \\__Shift magnitude : {}".format(args.eps))
print(" \\__Shift steps : {}".format(2 * args.shift_steps))
print(" \\__Traversal length : {}".format(round(2 * args.shift_steps * args.eps, 3)))
# Store latent codes for T-SNE visualization (for all paths across each latent code)
all_paths_latent_codes = []
# Iterate over given latent codes
for i in range(num_of_latent_codes):
# Get latent code
x_ = xs[i, :].unsqueeze(0)
latent_code_hash = latent_codes_dirs[i]
if args.verbose:
update_progress(" \\__.Latent code hash: {} [{:03d}/{:03d}] ".format(latent_code_hash,
i+1,
num_of_latent_codes),
num_of_latent_codes, i)
# Append the starting latent code to tsne_latent_codes
# tsne_latent_codes.append(x_.clone().cpu().numpy().flatten())
# Create directory for current latent code
latent_code_dir = osp.join(out_dir, '{}'.format(latent_code_hash))
os.makedirs(latent_code_dir, exist_ok=True)
# Create directory for storing path images
transformed_images_root_dir = osp.join(latent_code_dir, 'paths_images')
os.makedirs(transformed_images_root_dir, exist_ok=True)
transformed_images_strips_root_dir = osp.join(latent_code_dir, 'paths_strips')
os.makedirs(transformed_images_strips_root_dir, exist_ok=True)
# Keep all latent paths the current latent code (sample)
paths_latent_codes = []
# Keep phi coefficients
phi_coeffs = dict()
## ========================================================================================================== ##
## ##
## [ Path Traversal ] ##
## ##
## ========================================================================================================== ##
# Iterate over (interpretable) directions
for dim in range(num_gen_paths):
if args.verbose:
print()
update_progress(" \\__path: {:03d}/{:03d} ".format(dim + 1, num_gen_paths), num_gen_paths, dim + 1)
# Create shifted latent codes (for the given latent code z) and generate transformed images
transformed_images = []
# Current path's latent codes and shifts lists
latent_code = x_
if (not args.w_space) and ('stylegan' in gan) and ('W' in stylegan_space):
latent_code = G.get_w(x_, truncation=truncation)
if stylegan_space == 'W':
latent_code = latent_code[:, 0, :]
current_path_latent_codes = [latent_code]
current_path_latent_shifts = [torch.zeros_like(latent_code).cuda() if use_cuda
else torch.zeros_like(latent_code)]
## ====================================================================================================== ##
## ##
## [ Traverse through current path (positive/negative directions) ] ##
## ##
## ====================================================================================================== ##
# == Positive direction ==
latent_code = x_.clone()
if (not args.w_space) and ('stylegan' in gan) and ('W' in stylegan_space):
latent_code = G.get_w(x_, truncation=truncation).clone()
if stylegan_space == 'W':
latent_code = latent_code[:, 0, :]
cnt = 0
for k in range(args.shift_steps):
cnt += 1
# Calculate shift vector based on current z
support_sets_mask = torch.zeros(1, LSS.num_support_sets)
support_sets_mask[0, dim] = 1.0
if use_cuda:
support_sets_mask.cuda()
# Get latent space shift vector and shifted latent code
if ('stylegan' in gan) and (stylegan_space == 'W+'):
with torch.no_grad():
shift = args.eps * LSS(support_sets_mask,
latent_code[:, :stylegan_layer + 1, :].reshape(latent_code.shape[0], -1))
latent_code = latent_code + \
F.pad(input=shift, pad=(0, (STYLEGAN_LAYERS[gan] - 1 - stylegan_layer) * 512),
mode='constant', value=0).reshape_as(latent_code)
current_path_latent_code = latent_code
else:
with torch.no_grad():
shift = args.eps * LSS(support_sets_mask, latent_code)
latent_code = latent_code + shift
current_path_latent_code = latent_code
# Append intermediate latent code
# if k != args.shift_steps - 1:
# tsne_latent_codes.append(latent_code.clone().cpu().numpy().flatten())
# Store latent codes and shifts
if cnt == args.shift_leap:
if ('stylegan' in gan) and (stylegan_space == 'W+'):
current_path_latent_shifts.append(
F.pad(input=shift, pad=(0, (STYLEGAN_LAYERS[gan] - 1 - stylegan_layer) * 512),
mode='constant', value=0).reshape_as(latent_code))
else:
current_path_latent_shifts.append(shift)
current_path_latent_codes.append(current_path_latent_code)
cnt = 0
positive_endpoint = latent_code.clone().reshape(1, -1)
# tsne_latent_codes.append(positive_endpoint.clone().cpu().numpy().flatten())
# ========================
# == Negative direction ==
latent_code = x_.clone()
if (not args.w_space) and ('stylegan' in gan) and ('W' in stylegan_space):
latent_code = G.get_w(x_, truncation=truncation).clone()
if stylegan_space == 'W':
latent_code = latent_code[:, 0, :]
cnt = 0
for k in range(args.shift_steps):
cnt += 1
# Calculate shift vector based on current z
support_sets_mask = torch.zeros(1, LSS.num_support_sets)
support_sets_mask[0, dim] = 1.0
if use_cuda:
support_sets_mask.cuda()
# Get latent space shift vector and shifted latent code
if ('stylegan' in gan) and (stylegan_space == 'W+'):
with torch.no_grad():
shift = -args.eps * LSS(
support_sets_mask, latent_code[:, :stylegan_layer + 1, :].reshape(latent_code.shape[0], -1))
latent_code = latent_code + \
F.pad(input=shift, pad=(0, (STYLEGAN_LAYERS[gan] - 1 - stylegan_layer) * 512),
mode='constant', value=0).reshape_as(latent_code)
current_path_latent_code = latent_code
else:
with torch.no_grad():
shift = -args.eps * LSS(support_sets_mask, latent_code)
latent_code = latent_code + shift
current_path_latent_code = latent_code
# Append intermediate latent code
# if k != args.shift_steps - 1:
# tsne_latent_codes.append(latent_code.clone().cpu().numpy().flatten())
# Store latent codes and shifts
if cnt == args.shift_leap:
if ('stylegan' in gan) and (stylegan_space == 'W+'):
current_path_latent_shifts = \
[F.pad(input=shift, pad=(0, (STYLEGAN_LAYERS[gan] - 1 - stylegan_layer) * 512),
mode='constant', value=0).reshape_as(latent_code)] + current_path_latent_shifts
else:
current_path_latent_shifts = [shift] + current_path_latent_shifts
current_path_latent_codes = [current_path_latent_code] + current_path_latent_codes
cnt = 0
negative_endpoint = latent_code.clone().reshape(1, -1)
# tsne_latent_codes.append(latent_code.clone().cpu().numpy().flatten())
# ========================
# Calculate latent path phi coefficient (end-to-end distance / latent path length)
phi = torch.norm(negative_endpoint - positive_endpoint, dim=1).item() / (2 * args.shift_steps * args.eps)
phi_coeffs.update({dim: phi})
# Generate transformed images
# Split latent codes and shifts in batches
current_path_latent_codes = torch.cat(current_path_latent_codes)
current_path_latent_codes_batches = torch.split(current_path_latent_codes, args.batch_size)
current_path_latent_shifts = torch.cat(current_path_latent_shifts)
current_path_latent_shifts_batches = torch.split(current_path_latent_shifts, args.batch_size)
if len(current_path_latent_codes_batches) != len(current_path_latent_shifts_batches):
raise AssertionError()
else:
num_batches = len(current_path_latent_codes_batches)
transformed_img = []
for t in range(num_batches):
with torch.no_grad():
transformed_img.append(G(current_path_latent_codes_batches[t] +
current_path_latent_shifts_batches[t]))
transformed_img = torch.cat(transformed_img)
# Convert tensors (transformed images) into PIL images
for t in range(transformed_img.shape[0]):
transformed_images.append(tensor2image(transformed_img[t, :].cpu(),
img_size=args.img_size,
adaptive=True))
# Save all images in `transformed_images` list under `transformed_images_root_dir/<path_<dim>/`
transformed_images_dir = osp.join(transformed_images_root_dir, 'path_{:03d}'.format(dim))
os.makedirs(transformed_images_dir, exist_ok=True)
for t in range(len(transformed_images)):
transformed_images[t].save(osp.join(transformed_images_dir, '{:06d}.jpg'.format(t)),
"JPEG", quality=args.img_quality, optimize=True, progressive=True)
# Save original image
if (t == len(transformed_images) // 2) and (dim == 0):
transformed_images[t].save(osp.join(latent_code_dir, 'original_image.jpg'),
"JPEG", quality=95, optimize=True, progressive=True)
# Create strip of images
transformed_images_strip = create_strip(image_list=transformed_images, N=args.strip_number,
strip_height=args.strip_height)
transformed_images_strip.save(osp.join(transformed_images_strips_root_dir,
'path_{:03d}_strip.jpg'.format(dim)),
"JPEG", quality=args.img_quality, optimize=True, progressive=True)
# Save gif (static original image + traversal gif)
transformed_images_gif_frames = create_gif(transformed_images, gif_height=args.gif_height)
im = Image.new(mode='RGB', size=(2 * args.gif_height, args.gif_height))
im.save(fp=osp.join(transformed_images_strips_root_dir, 'path_{:03d}.gif'.format(dim)),
append_images=transformed_images_gif_frames,
save_all=True,
optimize=True,
loop=0,
duration=1000 // args.gif_fps)
# Append latent paths
paths_latent_codes.append(current_path_latent_codes.unsqueeze(0))
if args.verbose:
update_stdout(1)
# ============================================================================================================ #
# Save all latent paths and shifts for the current latent code (sample) in a tensor of size:
# paths_latent_codes : torch.Size([num_gen_paths, 2 * args.shift_steps + 1, G.dim_z])
paths_latent_codes_tensor = torch.cat(paths_latent_codes)
torch.save(paths_latent_codes_tensor, osp.join(latent_code_dir, 'paths_latent_codes.pt'))
all_paths_latent_codes.append(paths_latent_codes_tensor.cpu().numpy())
if args.verbose:
update_stdout(1)
print()
print()
# After processing all latent codes and paths
if args.verbose:
print("Performing t-SNE on latent codes for visualization...")
# # Consolidate all paths for T-SNE visualization (total_paths = num_of_latent_codes * num_gen_paths)
# all_paths_np = np.concatenate(all_paths_latent_codes, axis=0) # Shape: [total_paths, steps_per_path, latent_dim]
# all_paths_flattened = all_paths_np.reshape(-1, all_paths_np.shape[-1]) # Flatten paths into 2D array for T-SNE
# # Apply 3D T-SNE
# tsne_model = TSNE(n_components=3, perplexity=30, learning_rate=200, random_state=42)
# tsne_transformed = tsne_model.fit_transform(all_paths_flattened) # Shape: [total_points, 3]
# path_indices = [] # List to store indices for each path
# start_idx = 0 # Starting index for the current path in all_paths_np
# steps_per_path = 2 * args.shift_steps + 1 # Number of points in each path
# # Iterate over each latent code and its paths
# for i in range(num_of_latent_codes): # Loop through latent codes
# for dim in range(num_gen_paths): # Loop through directions (paths)
# # Generate the indices for this path
# indices = list(range(start_idx, start_idx + steps_per_path))
# path_indices.append(indices)
# # Update the starting index for the next path
# start_idx += steps_per_path
all_paths_latent_code_0 = all_paths_latent_codes[0]
num_paths, num_steps, _ = all_paths_latent_code_0.shape
tsne_latent_codes = all_paths_latent_code_0.reshape(-1, all_paths_latent_code_0.shape[-1])
# Apply 3D T-SNE
tsne_model = TSNE(n_components=3, perplexity=30, learning_rate=200, random_state=42)
tsne_transformed = tsne_model.fit_transform(tsne_latent_codes) # Shape: [total_points = num_paths * num_steps, 3]
# For this specific latent code, generate indices for each of its paths
path_indices = []
start_idx = 0
for _ in range(num_paths):
indices = list(range(start_idx, start_idx + num_steps))
path_indices.append(indices)
start_idx += num_steps
tsne_vis_dir = osp.join(out_dir, 'tsne_visualizations')
visualize_latent_space(
tsne_latent_codes=tsne_transformed, # T-SNE-reduced latent codes
semantic_dipoles=semantic_dipoles, # Semantic labels for paths
paths=path_indices, # Indices of paths (for a single latent code)
output_dir=tsne_vis_dir,
save_filename="latent_space_tsne.png"
)
# Create summarizing MD files
if args.gif or args.strip:
# For each interpretable path (warping function), collect the generated image sequences for each original latent
# code and collate them into a GIF file
print("#. Write summarizing MD files...")
# Write .md summary files
if args.gif:
md_summary_file = osp.join(out_dir, 'results.md')
md_summary_file_f = open(md_summary_file, "w")
md_summary_file_f.write("# Experiment: {}\n".format(args.exp))
if args.strip:
md_summary_strips_file = osp.join(out_dir, 'results_strips.md')
md_summary_strips_file_f = open(md_summary_strips_file, "w")
md_summary_strips_file_f.write("# Experiment: {}\n".format(args.exp))
if args.gif or args.strip:
for dim in range(num_gen_paths):
# Append to .md summary files
if args.gif:
md_summary_file_f.write("### \"{}\" → \"{}\"\n".format(semantic_dipoles[dim][1],
semantic_dipoles[dim][0]))
md_summary_file_f.write("<p align=\"center\">\n")
if args.strip:
md_summary_strips_file_f.write("## \"{}\" → \"{}\"\n".format(semantic_dipoles[dim][1],
semantic_dipoles[dim][0]))
md_summary_strips_file_f.write("<p align=\"center\">\n")
for lc in latent_codes_dirs:
if args.gif:
md_summary_file_f.write("<img src=\"{}\" width=\"450\" class=\"center\"/>\n".format(
osp.join(lc, 'paths_strips', 'path_{:03d}.gif'.format(dim))))
if args.strip:
md_summary_strips_file_f.write("<img src=\"{}\" style=\"width: 75vw\"/>\n".format(
osp.join(lc, 'paths_strips', 'path_{:03d}_strip.jpg'.format(dim))))
if args.gif:
md_summary_file_f.write("phi={}\n".format(phi_coeffs[dim]))
md_summary_file_f.write("</p>\n")
if args.strip:
md_summary_strips_file_f.write("phi={}\n".format(phi_coeffs[dim]))
md_summary_strips_file_f.write("</p>\n")
if args.gif:
md_summary_file_f.close()
if args.strip:
md_summary_strips_file_f.close()
if __name__ == '__main__':
main()
|