File size: 10,753 Bytes
8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import argparse
import numpy as np
import os.path as osp
import torch
from lib import GENFORCE_MODELS
from models.load_generator import load_generator
from sklearn import linear_model
from collections import defaultdict
from tqdm import tqdm
import json
def make_dict():
return defaultdict(make_dict)
def main():
"""A script for calculating the radii of minimal enclosing balls for the latent space of a (i.e., in Z/W/W+ space),
given a truncation parameter. When applicable, a linear model is trained in order to predict the radii of the latent
codes, given a truncation parameter.
The parameters of the linear model (i.e., the weight w and the bias b) are stored for each GAN type and each latent
space in a json file (i.e., models/jung_radii.json) as a dictionary with the following format:
{
...
<gan>:
{
'Z': (<w>, <b>),
'W':
{
...
<stylegan-layer>: (<w>, <b>),
...
},
},
...
}
so as, given a truncation parameter t, the radius is given as `w * t + b`.
Options:
-v, --verbose : set verbose mode on
--num-samples : set the number of latent codes to sample for generating images
--cuda : use CUDA (default)
--no-cuda : do not use CUDA
"""
parser = argparse.ArgumentParser(description="Fit a linear model for the jung radius of GAN's latent code given "
"a truncation parameter")
parser.add_argument('-v', '--verbose', action='store_true', help="verbose mode on")
parser.add_argument('--num-samples', type=int, default=1000, help="set number of latent codes to sample")
parser.add_argument('--cuda', dest='cuda', action='store_true', help="use CUDA during training")
parser.add_argument('--no-cuda', dest='cuda', action='store_false', help="do NOT use CUDA during training")
parser.set_defaults(cuda=True)
# ================================================================================================================ #
# Parse given arguments
args = parser.parse_args()
# CUDA
use_cuda = False
if torch.cuda.is_available():
if args.cuda:
use_cuda = True
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
print("*** WARNING ***: It looks like you have a CUDA device, but aren't using CUDA.\n"
" Run with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
# Build jung radii dictionary and populate it
nested_dict = lambda: defaultdict(nested_dict)
jung_radii_dict = nested_dict()
for gan in GENFORCE_MODELS.keys():
################################################################################################################
## ##
## [ StyleGANs ] ##
## ##
################################################################################################################
if 'stylegan' in gan:
############################################################################################################
## ##
## [ StyleGAN / Z-space ] ##
## ##
############################################################################################################
# Build GAN generator model and load with pre-trained weights
if args.verbose:
print(" \\__Build GAN generator model G and load with pre-trained weights...")
print(" \\__GAN generator : {} (res: {})".format(gan, GENFORCE_MODELS[gan][1]))
print(" \\__Pre-trained weights: {}".format(GENFORCE_MODELS[gan][0]))
G = load_generator(model_name=gan, latent_is_w=False, verbose=args.verbose).eval()
# Upload GAN generator model to GPU
if use_cuda:
G = G.cuda()
# Latent codes sampling
if args.verbose:
print(" \\__Sample {} {}-dimensional latent codes...".format(args.num_samples, G.dim_z))
zs = torch.randn(args.num_samples, G.dim_z)
if use_cuda:
zs = zs.cuda()
# Calculate expected latent norm
if args.verbose:
print(" \\__Calculate Jung radius...")
jung_radius = torch.cdist(zs, zs).max() * np.sqrt(G.dim_z / (2 * (G.dim_z + 1)))
jung_radii_dict[gan]['Z'] = (0.0, jung_radius.cpu().detach().item())
############################################################################################################
## ##
## [ StyleGAN / W/W+-space ] ##
## ##
############################################################################################################
# Build GAN generator model and load with pre-trained weights
if args.verbose:
print(" \\__Build GAN generator model G and load with pre-trained weights...")
print(" \\__GAN generator : {} (res: {})".format(gan, GENFORCE_MODELS[gan][1]))
print(" \\__Pre-trained weights: {}".format(GENFORCE_MODELS[gan][0]))
G = load_generator(model_name=gan, latent_is_w=True, verbose=args.verbose).eval()
# Upload GAN generator model to GPU
if use_cuda:
G = G.cuda()
# Latent codes sampling
if args.verbose:
print(" \\__Sample {} {}-dimensional latent codes...".format(args.num_samples, G.dim_z))
zs = torch.randn(args.num_samples, G.dim_z)
if use_cuda:
zs = zs.cuda()
# Get number of W layers for the given StyleGAN
stylegan_num_layers = G.get_w(zs, truncation=1.0).shape[1]
# Calculate expected latent norm and fit a linear model for each version of the W+ space
if args.verbose:
print(" \\__Calculate Jung radii and fit linear models...")
data_per_layer = dict()
tmp = []
for truncation in tqdm(np.linspace(0.1, 1.0, 100), desc=" \\__Calculate radii (W space): "):
ws = G.get_w(zs, truncation=truncation)[:, 0, :]
jung_radius = torch.cdist(ws, ws).max() * np.sqrt(ws.shape[1] / (2 * (ws.shape[1] + 1)))
tmp.append([truncation, jung_radius.cpu().detach().item()])
data_per_layer.update({0: tmp})
for ll in tqdm(range(1, stylegan_num_layers), desc=" \\__Calculate radii (W+ space): "):
tmp = []
for truncation in np.linspace(0.1, 1.0, 100):
ws_plus = G.get_w(zs, truncation=truncation)[:, :ll + 1, :]
ws_plus = ws_plus.reshape(ws_plus.shape[0], -1)
jung_radius = torch.cdist(ws_plus, ws_plus).max() * \
np.sqrt(ws_plus.shape[1] / (2 * (ws_plus.shape[1] + 1)))
tmp.append([truncation, jung_radius.cpu().detach().item()])
data_per_layer.update({ll: tmp})
for ll, v in tqdm(data_per_layer.items(), desc=" \\__Fit linear models"):
v = np.array(v)
lm = linear_model.LinearRegression()
lm.fit(v[:, 0].reshape(-1, 1), v[:, 1].reshape(-1, 1))
jung_radii_dict[gan]['W'][ll] = (float(lm.coef_[0, 0]), float(lm.intercept_[0]))
################################################################################################################
## ##
## [ ProgGAN ] ##
## ##
################################################################################################################
else:
# Build GAN generator model and load with pre-trained weights
if args.verbose:
print(" \\__Build GAN generator model G and load with pre-trained weights...")
print(" \\__GAN generator : {} (res: {})".format(gan, GENFORCE_MODELS[gan][1]))
print(" \\__Pre-trained weights: {}".format(GENFORCE_MODELS[gan][0]))
G = load_generator(model_name=gan, latent_is_w=False, verbose=args.verbose).eval()
# Upload GAN generator model to GPU
if use_cuda:
G = G.cuda()
# Latent codes sampling
if args.verbose:
print(" \\__Sample {} {}-dimensional latent codes...".format(args.num_samples, G.dim_z))
zs = torch.randn(args.num_samples, G.dim_z)
if use_cuda:
zs = zs.cuda()
# Calculate expected latent norm
if args.verbose:
print(" \\__Calculate Jung radius...")
jung_radius = torch.cdist(zs, zs).max() * np.sqrt(G.dim_z / (2 * (G.dim_z + 1)))
print("jung_radius")
print(jung_radius)
print(type(jung_radius))
jung_radii_dict[gan]['Z'] = (0.0, jung_radius.cpu().detach().item())
# Save expected latent norms dictionary
with open(osp.join('models', 'jung_radii.json'), 'w') as fp:
json.dump(jung_radii_dict, fp)
if __name__ == '__main__':
main()
|