datascientist22
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from tempfile import NamedTemporaryFile
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Initialize YOLOv8 model
|
9 |
+
model = YOLO("yolov8n.pt")
|
10 |
+
|
11 |
+
# Streamlit app title and creator information
|
12 |
+
st.markdown("[Created by Engr. Hamesh Raj](https://www.linkedin.com/in/datascientisthameshraj/)")
|
13 |
+
st.title("🎥 YOLOv8 Object Detection on Videos")
|
14 |
+
|
15 |
+
# Sidebar for video upload
|
16 |
+
st.sidebar.header("Upload Video")
|
17 |
+
uploaded_video = st.sidebar.file_uploader("Choose a video...", type=["mp4", "mov", "avi", "mkv"])
|
18 |
+
|
19 |
+
if uploaded_video is not None:
|
20 |
+
# Save the uploaded video to a temporary file
|
21 |
+
temp_video = NamedTemporaryFile(delete=False)
|
22 |
+
temp_video.write(uploaded_video.read())
|
23 |
+
video_path = temp_video.name
|
24 |
+
|
25 |
+
# Display the uploaded video
|
26 |
+
st.sidebar.video(uploaded_video)
|
27 |
+
|
28 |
+
# Submit button to process the video
|
29 |
+
if st.sidebar.button("Submit"):
|
30 |
+
st.subheader("Processing Video...")
|
31 |
+
|
32 |
+
# Open the video file
|
33 |
+
cap = cv2.VideoCapture(video_path)
|
34 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
35 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
36 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
37 |
+
|
38 |
+
# Create a temporary file to save the output video
|
39 |
+
temp_output_video = NamedTemporaryFile(delete=False, suffix='.mp4')
|
40 |
+
output_video_path = temp_output_video.name
|
41 |
+
|
42 |
+
# Define codec and create VideoWriter object
|
43 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
44 |
+
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
45 |
+
|
46 |
+
# Process each frame of the video
|
47 |
+
while cap.isOpened():
|
48 |
+
ret, frame = cap.read()
|
49 |
+
if not ret:
|
50 |
+
break
|
51 |
+
|
52 |
+
# Perform object detection
|
53 |
+
results = model(frame)
|
54 |
+
|
55 |
+
# Draw bounding boxes on the frame
|
56 |
+
for result in results:
|
57 |
+
for box in result.boxes:
|
58 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
59 |
+
conf = box.conf[0]
|
60 |
+
cls = box.cls[0]
|
61 |
+
label = f'{model.names[int(cls)]} {conf:.2f}'
|
62 |
+
|
63 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
64 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
65 |
+
|
66 |
+
out.write(frame)
|
67 |
+
|
68 |
+
cap.release()
|
69 |
+
out.release()
|
70 |
+
|
71 |
+
# Display the processed video
|
72 |
+
st.subheader("Processed Video")
|
73 |
+
st.video(output_video_path)
|
74 |
+
|
75 |
+
# Download button for the processed video
|
76 |
+
with open(output_video_path, "rb") as file:
|
77 |
+
st.download_button(
|
78 |
+
label="Download Processed Video",
|
79 |
+
data=file,
|
80 |
+
file_name="processed_video.mp4",
|
81 |
+
mime="video/mp4"
|
82 |
+
)
|
83 |
+
|
84 |
+
# Clean up temporary files
|
85 |
+
os.remove(video_path)
|
86 |
+
os.remove(output_video_path)
|