Spaces:
Sleeping
Sleeping
File size: 11,954 Bytes
cc6dcbe bbd5462 1ab43b3 cc6dcbe bbd5462 cc6dcbe bbd5462 cc6dcbe bbd5462 cc6dcbe bbd5462 cc6dcbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import streamlit as st
from utils.utils import *
from agents import prompts
import pyperclip
from dotenv import load_dotenv
import pandas as pd
import hashlib
load_dotenv()
def copytoclipboard():
if st.button("Copy to Clipboard"):
pyperclip.copy(st.session_state.analysis)
st.success("Cover letter copied to clipboard!")
def hash_inputs(resume_text, job_title, must_have, job_pref):
# Generate a hash based on the inputs
input_str = resume_text + job_title + must_have + job_pref
return hashlib.md5(input_str.encode()).hexdigest()
def hash_sel_inputs(resume_text, job_title, must_have, job_pref):
# Generate a hash based on the inputs
input_str = str(resume_text) + job_title + must_have + job_pref
return hashlib.md5(input_str.encode()).hexdigest()
def table_resp(lists):
d={}
sc=[[],[],[],[],[],[],[]]
for i in lists:
sc[0].append(i['candidate_name'])
sc[1].append(str(i['overall_match_score'])+'%')
sc[2].append(str(i['skills_keywords_score'])+'%')
sc[3].append(str(i['experience_score'])+'%')
sc[4].append(str(i['education_certifications_score'])+'%')
sc[5].append(str(i['preferred_qualifications_score'])+'%')
sc[6].append(i['score_interpretation'])
cols=['Candidate Name','Match Score','Skills & Keywords (40%)','Experience & Responsibilities (30%)','Education & Certifications (20%)','Preferred Qualifications (10%)','Score Interpretation']
for i in range(len(sc)):
d[cols[i]]=sc[i]
df = pd.DataFrame(d)
return df
def table_resp_exp(lists):
d={}
sc=[[],[],[],[],[],[],[]]
for i in lists:
sc[0].append(i['candidate_name'])
sc[1].append(i['overall_match_score'])
sc[2].append('('+str(i['skills_keywords_score'])+' out of 40) '+i['skills_keywords_explanation'])
sc[3].append('('+str(i['experience_score'])+' out of 30) '+i['experience_explanation'])
sc[4].append('('+str(i['education_certifications_score'])+' out of 20) '+i['education_certifications_explanation'])
sc[5].append('('+str(i['preferred_qualifications_score'])+' out of 10) '+i['preferred_qualifications_explanation'])
sc[6].append(i['score_interpretation'])
cols=['Candidate Name','Match Score','Skills & Keywords (40%)','Experience & Responsibilities (30%)','Education & Certifications (20%)','Preferred Qualifications (10%)','Score Interpretation']
for i in range(len(sc)):
d[cols[i]]=sc[i]
df = pd.DataFrame(d)
return df
def expand(ext_res):
formatted_resp=f"""
**Candidate:** {ext_res['candidate_name']}
**Match Score**: {ext_res['overall_match_score']}%
**Skills & Keywords** ({ext_res['skills_keywords_score']}% out of 40%):
{ext_res['skills_keywords_explanation']}
**Experience & Responsibilities** ({ext_res['experience_score']}% out of 30%):
{ext_res['experience_explanation']}
**Education & Certifications** ({ext_res['education_certifications_score']}% out of 20%):
{ext_res['education_certifications_explanation']}
**Preferred Qualifications** ({ext_res['preferred_qualifications_score']}% out of 10%):
{ext_res['preferred_qualifications_explanation']}
**Score Interpretation**: {ext_res['score_interpretation']}
"""
return formatted_resp
def concise_resp(ext_res):
formatted_resp=f"""
**Candidate:** {ext_res['candidate_name']}
**Match Score**: {ext_res['overall_match_score']}%
**Skills & Keywords**: {ext_res['skills_keywords_score']}% out of 40%
**Experience**: {ext_res['experience_score']}% out of 30%
**Education & Certifications**: {ext_res['education_certifications_score']}% out of 20%
**Preferred Qualifications**: {ext_res['preferred_qualifications_score']}% out of 10%
**Score Interpretation**: {ext_res['score_interpretation']}
"""
return formatted_resp
def filecheck(resume_file):
if len(resume_file)==1 and resume_file is not None:
resume_text = parse_resume(resume_file[0])
return resume_text
def filecheck_error(resume_file):
if len(resume_file)==0:
st.warning("Please upload a Resume.")
else:
st.warning("Please upload only one Resume.")
def filescheck(resume_file):
if len(resume_file)>1 and resume_file is not None:
resume_text = parse_resumes(resume_file)
return resume_text
def filescheck_error(resume_file):
if len(resume_file)==0:
st.warning("Please upload Resumes.")
else:
st.warning("Please upload more than 1 Resume for selection.")
def main():
if 'analysis' not in st.session_state:
st.session_state.analysis = None
if 'jobadv' not in st.session_state:
st.session_state.jobadv = None
if 'analysis_mc' not in st.session_state:
st.session_state.analysis_mc = None
if 'analysis' not in st.session_state:
st.session_state.analysis = None
if 'input_hash' not in st.session_state:
st.session_state.input_hash = None
if 'analysis_mc_s' not in st.session_state:
st.session_state.analysis_mc_s = None
if 'analysis_s' not in st.session_state:
st.session_state.analysis_s = None
if 'input_hash_sel' not in st.session_state:
st.session_state.input_hash_sel = None
if 'analysis_mc_s_exp' not in st.session_state:
st.session_state.analysis_mc_s_exp = None
st.title("Job Hiring Assistant")
# Select Task
st.sidebar.header("Select Task")
selection = st.sidebar.radio("Select option", ("Generate Job Adverstisment", "Resume Analysis","Resume Selection"))
# Generate Cover Letter
if selection == "Generate Job Adverstisment":
st.header("Job Details")
st.subheader('Job Title')
job_title_text = st.text_input("Enter job title here",max_chars=30)
st.subheader('Job Requirement')
job_requirement = st.text_area("Enter job requirement here")
if st.button("Generate Job Adverstisment"):
if job_requirement is not None:
prompt_template = prompts.prompt_template_classic
jobadv = generate_adv(job_requirement,job_title_text, prompt_template)
st.subheader("Job Adverstisment:")
st.markdown(jobadv)
st.session_state.jobadv = jobadv
#copytoclipboard()
else:
st.warning("Please provide a job requirement.")
else:
st.sidebar.header("Resume Analysis Criteria")
scoretext='''**80-100**: Good match
**50-79**: Medium match
**0-49**: Poor match '''
criteriatext='''**40%**: Skills and Keywords
**30%**: Experience & Responsibilities
**20%**: Education & Certifications
**10%**: Preferred Qualifications '''
#st.session_state.dropdown_open= False # Close the dropdown on click
#Match Score Range
# st.sidebar.button("Match Score Range",icon=":material/arrow_drop_down:")
#st.session_state.dropdown_open= False
#st.sidebar.button("Match Score Range",icon=":material/arrow_drop_up:")
st.sidebar.subheader("Match Score Range")
scorecontainer=st.sidebar.container(height=130)
scorecontainer.markdown(scoretext)
#Criteria weight
st.sidebar.subheader("Criteria weight")
criteriacontainer=st.sidebar.container(height=130)
criteriacontainer.markdown(criteriatext)
st.subheader("Upload Resume")
resume_file = st.file_uploader("Choose a file or drag and drop", type=["pdf"],accept_multiple_files=True)
#st.header("Job Details")
st.subheader('Job Title')
job_title_text = st.text_input("Enter job title here", "",max_chars=30)
st.subheader('Job Requirements')
must_have = st.text_area("Enter job must-have requirements here", "")
st.subheader('Preferred Qualification')
job_pref = st.text_area("Enter any preferred skills or qualifications here", "")
resume_text = None
if selection == "Resume Analysis":
btn1=st.button("Generate Resume Analysis")
if btn1:
#Only show Scores
#if st.button("Match Score"):
resume_text=filecheck(resume_file)
if resume_text is not None:
if job_pref is not None and must_have is not None :
current_input_hash = hash_inputs(resume_text, job_title_text, must_have, job_pref)
# Check if the inputs have changed
if st.session_state.input_hash != current_input_hash:
# Inputs have changed, generate new analysis
st.session_state.input_hash = current_input_hash
prompt_template = prompts.prompt_template_modern
response = generate_analysis(resume_text, job_pref, job_title_text, must_have, prompt_template)
# Cache the result
st.session_state.analysis = expand(response)
st.session_state.analysis_mc = concise_resp(response)
# Display the cached response based on the button clicked
# Match Score button clicked
st.subheader("Resume Analysis (Match Score)")
st.markdown(st.session_state.analysis_mc)
with st.expander("Detailed Analysis"):
st.markdown(st.session_state.analysis)
else:
st.warning("Please provide all job details.")
else:
filecheck_error(resume_file)
else:
btn1=st.button("Generate Match Score")
btn2=st.button("Generate Analysis")
if btn1 or btn2:
#Only show Scores
#if st.button("Match Score"):
resume_text=filescheck(resume_file)
if resume_text is not None:
if job_pref is not None and must_have is not None :
current_input_hash = hash_sel_inputs(resume_text, job_title_text, must_have, job_pref)
# Check if the inputs have changed
if st.session_state.input_hash_sel != current_input_hash:
# Inputs have changed, generate new analysis
st.session_state.input_hash_sel = current_input_hash
prompt_template = prompts.prompt_template_resumes_
response = generate_sel_analysis(resume_text, job_pref, job_title_text, must_have, prompt_template)
print('response:',response)
response_anal=max(response, key=lambda x: x['overall_match_score'])
# Cache the result
st.session_state.analysis_s = expand(response_anal)
st.session_state.analysis_mc_s = table_resp(response)
st.session_state.analysis_mc_s_exp = table_resp_exp(response)
# Display the cached response based on the button clicked
if btn1:
# Match Score button clicked
st.subheader("Match Scores")
st.dataframe(st.session_state.analysis_mc_s,hide_index=True)
elif btn2:
# Generate Analysis button clicked
print("expands")
st.subheader("Resume Analysis (Top Scored)")
# Candidate selection
st.markdown(st.session_state.analysis_s)
with st.expander("Detailed Analysis - All Candidates"):
st.dataframe(st.session_state.analysis_mc_s_exp,hide_index=True)
else:
st.warning("Please provide all job details.")
else:
filescheck_error(resume_file)
if __name__ == "__main__":
main()
|