Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import cv2 | |
import os | |
import torch.nn as nn | |
import numpy as np | |
import torchvision | |
from torchvision.ops import box_iou | |
from PIL import Image | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# apply nms algorithm | |
def apply_nms(orig_prediction, iou_thresh=0.3): | |
# torchvision returns the indices of the bboxes to keep | |
keep = torchvision.ops.nms(orig_prediction['boxes'], orig_prediction['scores'], iou_thresh) | |
final_prediction = orig_prediction | |
final_prediction['boxes'] = final_prediction['boxes'][keep] | |
final_prediction['scores'] = final_prediction['scores'][keep] | |
final_prediction['labels'] = final_prediction['labels'][keep] | |
return final_prediction | |
# Draw the bounding box | |
def plot_img_bbox(img, target): | |
h,w,c = img.shape | |
for box in (target['boxes']): | |
xmin, ymin, xmax, ymax = int((box[0].cpu()/1024)*w), int((box[1].cpu()/1024)*h), int((box[2].cpu()/1024)*w),int((box[3].cpu()/1024)*h) | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2) | |
label = "palm" | |
# Add the label and confidence score | |
label = f'{label}' | |
cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) | |
# Display the image with detections | |
#filename = 'pred.jpg' | |
#cv2.imwrite(filename, img) | |
return img | |
# transform image | |
test_transforms = A.Compose([ | |
A.Resize(height=1024, width=1024, always_apply=True), | |
A.Normalize(always_apply=True), | |
ToTensorV2(always_apply=True),]) | |
# select device (whether GPU or CPU) | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
# model loading | |
model = torch.load('pickel.pth',map_location=torch.device('cpu')) | |
model = model.to(device) | |
#-> Tuple[Dict, float] | |
def predict(img) : | |
# Start a timer | |
start_time = timer() | |
# Transform the target image and add a batch dimension | |
#image_transformed = test_transforms() | |
transformed = test_transforms(image= np.array(img)) | |
image_transformed = transformed["image"] | |
image_transformed = image_transformed.unsqueeze(0) | |
image_transformed = image_transformed.to(device) | |
# inference | |
model.eval() | |
with torch.no_grad(): | |
predictions = model(image_transformed)[0] | |
nms_prediction = apply_nms(predictions, iou_thresh=0.1) | |
pred = plot_img_bbox(np.array(img), nms_prediction) | |
#pred = np.array(Image.open("pred.jpg")) | |
word = "Number of palm trees detected : "+str(len(nms_prediction["boxes"])) | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred,word | |
image = gr.components.Image() | |
out_im = gr.components.Image() | |
out_lab = gr.components.Label() | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
title = "🌴Palm trees detection🌴" | |
description = "Faster r-cnn model to detect oil palm trees in drones images." | |
article = "Created by data354." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
#[gr.Label(label="Predictions"), # what are the outputs? | |
#gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs= image, #gr.Image(type="pil"), # what are the inputs? | |
outputs=[out_im,out_lab], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
# Launch the demo! | |
demo.launch(debug = False) |