OCR_Project / utils.py
youl's picture
update
ecf4473 verified
raw
history blame
7.93 kB
import os
from google.cloud import vision
import re
import torch
import torchvision
import numpy as np
from PIL import Image
import albumentations as A
from albumentations.pytorch import ToTensorV2
import tempfile
import json
def getcredentials():
secret_key_credential = os.getenv("cloud_vision")
with tempfile.NamedTemporaryFile(mode='w+', delete= True, suffix=".json") as temp_file:
temp_file.write(json.dumps(secret_key_credential))
tempfile_name = temp_file.name
return tempfile_name
##
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = getcredentials()
##
def info_new_cni(donnees):
##
informations = {}
# Utilisation d'expressions régulières pour extraire les informations spécifiques
numero_carte = re.search(r'n° (C\d+)', ' '.join(donnees))
#prenom_nom = re.search(r'Prénom\(s\)\s+(.*?)\s+Nom\s+(.*?)\s+Signature', ' '.join(donnees))
nom = re.search(r'Nom\s+(.*?)\s', ' '.join(donnees))
prenom = re.search(r'Prénom\(s\)\s+(.*?)\s+Nom\s+(.*?)', ' '.join(donnees))
date_naissance = re.search(r'Date de Naissance\s+(.*?)+(\d{2}/\d{2}/\d{4})', ' '.join(donnees))
lieu_naissance = re.search(r'Lieu de Naissance\s+(.*?)\s', ' '.join(donnees))
taille = re.search(r'Sexe Taille\s+(.*?)+(\d+,\d+)', ' '.join(donnees))
nationalite = re.search(r'Nationalité\s+(.*?)\s+\d+', ' '.join(donnees))
date_expiration = re.search(r'Date d\'expiration\s+(\d+/\d+/\d+)', ' '.join(donnees))
sexe = re.search(r'Date de Naissance\s+(.*?)+(\d{2}/\d{2}/\d{4})+(.*)', ' '.join(donnees))
# Stockage des informations extraites dans un dictionnaire
if numero_carte:
informations['Numéro de carte'] = numero_carte.group(1)
if nom :
informations['Nom'] = nom.group(1)
if prenom:
informations['Prénom'] = prenom.group(1)
if date_naissance:
informations['Date de Naissance'] = date_naissance.group(2)
if lieu_naissance:
informations['Lieu de Naissance'] = lieu_naissance.group(1)
if taille:
informations['Taille'] = taille.group(2)
if nationalite:
informations['Nationalité'] = nationalite.group(1)
if date_expiration:
informations['Date d\'expiration'] = date_expiration.group(1)
if sexe :
informations['sexe'] = sexe.group(3)[:2]
return informations
##
def info_ancien_cni(infos):
""" Extract information in row data of ocr"""
informations = {}
immatriculation_patern = r'Immatriculation:\s+(C \d{4} \d{4} \d{2})'
immatriculation = re.search(immatriculation_patern, ''.join(infos))
nom = infos[4]
prenom_pattern = r'Nom\n(.*?)\n'
prenom = re.search(prenom_pattern, '\n'.join(infos))
sexe_pattern = r'Prénoms\n(.*?)\n'
sexe = re.search(sexe_pattern, '\n'.join(infos))
taille_pattern = r'Sexe\n(.*?)\n'
taille = re.search(taille_pattern, '\n'.join(infos))
date_naiss_pattern = r'Taille\s+(.*?)+(\d+/\d+/\d+)' # r'Taille (m)\n(.*?)\n'
date_naissance = re.search(date_naiss_pattern, ' '.join(infos))
lieu_pattern = r'Date de Naissance\n(.*?)\n'
lieu_naissance = re.search(lieu_pattern, '\n'.join(infos))
valide_pattern = r'Valide jusqu\'au+(.*?)+(\d+/\d+/\d+)'
validite = re.search(valide_pattern, ' '.join(infos))
# Stockage des informations extraites dans un dictionnaire
if immatriculation:
informations['Immatriculation'] = immatriculation.group(1)
if nom :
informations['Nom'] = infos[4]
if prenom:
informations['Prénom'] = prenom.group(1)
if date_naissance:
informations['Date de Naissance'] = date_naissance.group(2)
if lieu_naissance:
informations['Lieu de Naissance'] = lieu_naissance.group(1)
if taille:
informations['Taille'] = taille.group(1)
if validite:
informations['Date d\'expiration'] = validite.group(2)
if sexe :
informations['sexe'] = sexe.group(1)
return informations
##
def filtrer_elements(liste):
elements_filtres = []
for element in liste:
if element not in ['\r',"RÉPUBLIQUE DE CÔTE D'IVOIRE", "MINISTÈRE DES TRANSPORTS", "PERMIS DE CONDUIRE"]:
elements_filtres.append(element)
return elements_filtres
def permis_de_conduite(donnees):
""" Extraire les information de permis de conduire"""
informations = {}
infos = filtrer_elements(donnees)
nom_pattern = r'Nom\n(.*?)\n'
nom = re.search(nom_pattern, '\n'.join(infos))
prenom_pattern = r'Prénoms\n(.*?)\n'
prenom = re.search(prenom_pattern, '\n'.join(infos))
date_lieu_naissance_patern = r'Date et lieu de naissance\n(.*?)\n'
date_lieu_naissance = re.search(date_lieu_naissance_patern, '\n'.join(infos))
date_lieu_delivrance_patern = r'Date et lieu de délivrance\n(.*?)\n'
date_lieu_delivrance = re.search(date_lieu_delivrance_patern, '\n'.join(infos))
numero_pattern = r'Numéro du permis de conduire\n(.*?)\n'
numero = re.search(numero_pattern, '\n'.join(infos))
restriction_pattern = r'Restriction\(s\)\s+(.*?)+(.*)'
restriction = re.search(restriction_pattern, ' '.join(infos))
# Stockage des informations extraites dans un dictionnaire
if nom:
informations['Nom'] = nom.group(1)
if prenom :
informations['Prenoms'] = prenom.group(1)
if date_lieu_naissance :
informations['Date_et_lieu_de_naissance'] = date_lieu_naissance.group(1)
if date_lieu_naissance :
informations['Date_et_lieu_de_délivrance'] = date_lieu_delivrance.group(1)
informations['Categorie'] = infos[0]
if numero:
informations['Numéro_du_permis_de_conduire'] = numero.group(1)
if restriction:
informations['Restriction(s)'] = restriction.group(2)
return informations
# Fonction pour extraire les informations individuelles
def extraire_informations_carte(path, type_de_piece=1):
""" Detect text in identity card"""
client = vision.ImageAnnotatorClient()
with open(path,'rb') as image_file:
content = image_file.read()
image = vision.Image(content = content)
# for non dense text
#response = client.text_detection(image=image)
#for dense text
response = client.document_text_detection(image = image)
texts = response.text_annotations
ocr_texts = []
for text in texts:
ocr_texts.append(f"\r\n{text.description}")
if response.error.message :
raise Exception("{}\n For more informations check : https://cloud.google.com/apis/design/errors".format(response.error.message))
donnees = ocr_texts[0].split('\n')
if type_de_piece ==1:
return info_new_cni(donnees)
elif type_de_piece == 2:
return info_ancien_cni(donnees)
elif type_de_piece == 3:
return permis_de_conduite(donnees)
else :
return "Le traitement de ce type de document n'est pas encore pris en charge"
def load_checkpoint(path):
print('--> Loading checkpoint')
return torch.load(path,map_location=torch.device('cpu'))
def make_prediction(image_path):
# define the using of GPU or CPU et background training
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
## load model
model = load_checkpoint("data/model.pth")
## transformation
test_transforms = A.Compose([
A.Resize(height=224, width=224, always_apply=True),
A.Normalize(always_apply=True),
ToTensorV2(always_apply=True),])
## read the image
image = np.array(Image.open(image_path).convert('RGB'))
transformed = test_transforms(image= image)
image_transformed = transformed["image"]
image_transformed = image_transformed.unsqueeze(0)
image_transformed = image_transformed.to(device)
model.eval()
with torch.set_grad_enabled(False):
output = model(image_transformed)
# Post-process predictions
probabilities = torch.nn.functional.softmax(output[0], dim=0)
predicted_class = torch.argmax(probabilities).item()
proba = float(max(probabilities))
return proba, predicted_class