Spaces:
Running
Running
from fastapi import FastAPI, HTTPException | |
from typing import List | |
from pydantic import BaseModel | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from IndicTransToolkit import IndicProcessor | |
from fastapi.middleware.cors import CORSMiddleware | |
import torch | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
"ai4bharat/indictrans2-indic-indic-1B", trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"ai4bharat/indictrans2-indic-indic-1B", trust_remote_code=True | |
) | |
ip = IndicProcessor(inference=True) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(DEVICE) | |
def translate_text(sentences: List[str], src_lang: str, target_lang: str): | |
try: | |
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang) | |
inputs = tokenizer( | |
batch, | |
truncation=True, | |
padding="longest", | |
return_tensors="pt", | |
return_attention_mask=True, | |
).to(DEVICE) | |
with torch.no_grad(): | |
generated_tokens = model.generate( | |
**inputs, | |
use_cache=True, | |
min_length=0, | |
max_length=256, | |
num_beams=5, | |
num_return_sequences=1, | |
) | |
with tokenizer.as_target_tokenizer(): | |
generated_tokens = tokenizer.batch_decode( | |
generated_tokens.detach().cpu().tolist(), | |
skip_special_tokens=True, | |
) | |
return generated_tokens | |
except Exception as e: | |
return str(e) | |
def read_root(): | |
return {"Hello": "World"} | |
class TranslateRequest(BaseModel): | |
sentences: List[str] | |
src_lang: str | |
target_lang: str | |
def translate(request: TranslateRequest): | |
try: | |
result = translate_text(request.sentences, request.src_lang, request.target_lang) | |
return result | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |