File size: 10,568 Bytes
716f49f
 
 
 
 
5af82ca
 
 
 
 
 
 
 
 
 
 
716f49f
5af82ca
 
 
 
 
716f49f
 
 
 
fc76896
716f49f
 
4031105
716f49f
 
 
5af82ca
 
716f49f
 
 
 
 
 
 
5af82ca
716f49f
5af82ca
716f49f
5af82ca
 
716f49f
 
 
5af82ca
 
716f49f
 
 
 
 
 
 
5af82ca
 
716f49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af82ca
716f49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af82ca
 
716f49f
 
 
 
 
 
 
 
 
5af82ca
716f49f
5af82ca
716f49f
5af82ca
 
716f49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af82ca
 
 
716f49f
5af82ca
 
716f49f
5af82ca
716f49f
 
 
 
 
 
 
 
 
5af82ca
 
 
716f49f
5af82ca
716f49f
 
5af82ca
 
716f49f
5af82ca
 
716f49f
5af82ca
 
 
 
 
716f49f
5af82ca
 
 
 
 
 
 
 
716f49f
5af82ca
716f49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af82ca
716f49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af82ca
 
 
 
716f49f
 
 
44f3bce
716f49f
 
 
 
 
 
5af82ca
716f49f
 
5af82ca
 
 
 
 
 
 
716f49f
 
5af82ca
 
 
 
716f49f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionImg2ImgPipeline,
    DPMSolverMultistepScheduler,
)
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random


start_time = time.time()
current_steps = 25


class Model:
    def __init__(self, name, path=""):
        self.name = name
        self.path = path

        if path != "":
            self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
                path, torch_dtype=torch.float16
            )
            self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
                self.pipe_t2i.scheduler.config
            )
            self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components)
        else:
            self.pipe_t2i = None
            self.pipe_i2i = None


models = [
    Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"),
    Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"),
#    Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"),
#    Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"),
#    Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"),
]

MODELS = {m.name: m for m in models}

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"


# if torch.cuda.is_available():
#  pipe = pipe.to("cuda")
#  pipe.enable_xformers_memory_efficient_attention()


def error_str(error, title="Error"):
    return (
        f"""#### {title}
            {error}"""
        if error
        else ""
    )


def inference(
    model_name,
    prompt,
    guidance,
    steps,
    n_images=1,
    width=512,
    height=512,
    seed=0,
    img=None,
    strength=0.5,
    neg_prompt="",
):

    print(psutil.virtual_memory())  # print memory usage

    if seed == 0:
        seed = random.randint(0, 2147483647)

    generator = torch.Generator("cuda").manual_seed(seed)

    try:
        if img is not None:
            return (
                img_to_img(
                    model_name,
                    prompt,
                    n_images,
                    neg_prompt,
                    img,
                    strength,
                    guidance,
                    steps,
                    width,
                    height,
                    generator,
                    seed,
                ),
                f"Done. Seed: {seed}",
            )
        else:
            return (
                txt_to_img(
                    model_name,
                    prompt,
                    n_images,
                    neg_prompt,
                    guidance,
                    steps,
                    width,
                    height,
                    generator,
                    seed,
                ),
                f"Done. Seed: {seed}",
            )
    except Exception as e:
        return None, error_str(e)


def txt_to_img(
    model_name,
    prompt,
    n_images,
    neg_prompt,
    guidance,
    steps,
    width,
    height,
    generator,
    seed,
):
    pipe = MODELS[model_name].pipe_t2i

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")
        pipe.enable_xformers_memory_efficient_attention()

    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_images_per_prompt=n_images,
        num_inference_steps=int(steps),
        guidance_scale=guidance,
        width=width,
        height=height,
        generator=generator,
    )

    pipe.to("cpu")

    return replace_nsfw_images(result)


def img_to_img(
    model_name,
    prompt,
    n_images,
    neg_prompt,
    img,
    strength,
    guidance,
    steps,
    width,
    height,
    generator,
    seed,
):
    pipe = MODELS[model_name].pipe_i2i

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")
        pipe.enable_xformers_memory_efficient_attention()

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)

    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_images_per_prompt=n_images,
        image=img,
        num_inference_steps=int(steps),
        strength=strength,
        guidance_scale=guidance,
        generator=generator,
    )

    pipe.to("cpu")

    return replace_nsfw_images(result)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images


with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        """
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Protogen Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Protogen Stable Diffusion models.
              </p>
              <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
            </div>
        """
    )
    with gr.Row():

        with gr.Column(scale=55):
            with gr.Group():
                model_name = gr.Dropdown(
                    label="Model",
                    choices=[m.name for m in models],
                    value=models[0].name,
                )
                with gr.Box(visible=False) as custom_model_group:
                    custom_model_path = gr.Textbox(
                        label="Custom model path",
                        placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release",
                        interactive=True,
                    )
                    gr.HTML(
                        "<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
                    )

                with gr.Row():
                    prompt = gr.Textbox(
                        label="Prompt",
                        show_label=False,
                        max_lines=2,
                        placeholder="Enter prompt.",
                    ).style(container=False)
                    generate = gr.Button(value="Generate").style(
                        rounded=(False, True, True, False)
                    )

                # image_out = gr.Image(height=512)
                gallery = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(grid=[2], height="auto")

            state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
                container=False
            )
            error_output = gr.Markdown()

        with gr.Column(scale=45):
            with gr.Tab("Options"):
                with gr.Group():
                    neg_prompt = gr.Textbox(
                        label="Negative prompt",
                        placeholder="What to exclude from the image",
                    )

                    n_images = gr.Slider(
                        label="Images", value=1, minimum=1, maximum=4, step=1
                    )

                    with gr.Row():
                        guidance = gr.Slider(
                            label="Guidance scale", value=7.5, maximum=15
                        )
                        steps = gr.Slider(
                            label="Steps",
                            value=current_steps,
                            minimum=2,
                            maximum=75,
                            step=1,
                        )

                    with gr.Row():
                        width = gr.Slider(
                            label="Width", value=512, minimum=64, maximum=1024, step=8
                        )
                        height = gr.Slider(
                            label="Height", value=512, minimum=64, maximum=1024, step=8
                        )

                    seed = gr.Slider(
                        0, 2147483647, label="Seed (0 = random)", value=0, step=1
                    )

            with gr.Tab("Image to image"):
                with gr.Group():
                    image = gr.Image(
                        label="Image", height=256, tool="editor", type="pil"
                    )
                    strength = gr.Slider(
                        label="Transformation strength",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.5,
                    )

    inputs = [
        model_name,
        prompt,
        guidance,
        steps,
        n_images,
        width,
        height,
        seed,
        image,
        strength,
        neg_prompt,
    ]
    outputs = [gallery, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    ex = gr.Examples(
        [
            [models[0].name, "portrait of a beautiful alyx vance half life", 10, 25],
            [models[1].name, "Brad Pitt with sunglasses, highly realistic", 7.5, 25],
        ],
        inputs=[model_name, prompt, guidance, steps],
        outputs=outputs,
        fn=inference,
        cache_examples=False,
    )

    gr.HTML(
        """
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
      <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
      <p>Space by: Darkstorm (Victor Espinoza)<br>
      <a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
    </div>
    """
    )

print(f"Space built in {time.time() - start_time:.2f} seconds")

demo.queue(concurrency_count=1)
demo.launch()