daresearch commited on
Commit
63d7972
·
verified ·
1 Parent(s): 2532c03

Update finetune_script.py

Browse files
Files changed (1) hide show
  1. finetune_script.py +196 -149
finetune_script.py CHANGED
@@ -1,156 +1,203 @@
1
- # 0.2 Import Dependencies
2
- import os
 
 
 
3
  import torch
4
- from transformers import TextStreamer, TrainingArguments
 
5
  from datasets import load_dataset
6
  from trl import SFTTrainer
7
- from unsloth import FastLanguageModel, is_bfloat16_supported
8
-
9
- # 0.3 Import notebook_launcher from Accelerate
10
- from accelerate import notebook_launcher
11
-
12
- def train():
13
- # 1. Configuration
14
- max_seq_length = 2048
15
- dtype = None
16
- load_in_4bit = True
17
-
18
- alpaca_prompt = """Below is an instruction ..."""
19
-
20
- instruction = """This assistant is trained to code executive ranks ..."""
21
- input = "In 2015 the company ..."
22
- huggingface_model_name = "daresearch/Llama-3.1-70B-bnb-4bit-Exec-Labeling"
23
-
24
- # 2. Before Training
25
- model, tokenizer = FastLanguageModel.from_pretrained(
26
- model_name="unsloth/Meta-Llama-3.1-8B-bnb-4bit",
27
- max_seq_length=max_seq_length,
28
- dtype=dtype,
29
- load_in_4bit=load_in_4bit,
30
- token=os.getenv("HF_TOKEN")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  )
32
-
33
- FastLanguageModel.for_inference(model) # Enable native 2x faster inference
34
- inputs = tokenizer(
35
- [
36
- alpaca_prompt.format(instruction, input, "")
37
- ], return_tensors="pt"
38
- ).to("cuda")
39
-
40
- text_streamer = TextStreamer(tokenizer)
41
- _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=1000)
42
-
43
- # 3. Load data
44
- EOS_TOKEN = tokenizer.eos_token
45
- def formatting_prompts_func(examples):
46
- instructions = examples["instruction"]
47
- inputs = examples["input"]
48
- outputs = examples["output"]
49
- texts = []
50
- for i, inp, out in zip(instructions, inputs, outputs):
51
- text = alpaca_prompt.format(i, inp, out) + EOS_TOKEN
52
- texts.append(text)
53
- return {"text": texts}
54
-
55
- train_dataset = load_dataset("csv", data_files="train.csv", split="train")
56
- valid_dataset = load_dataset("csv", data_files="valid.csv", split="train")
57
- train_dataset = train_dataset.map(formatting_prompts_func, batched=True)
58
- valid_dataset = valid_dataset.map(formatting_prompts_func, batched=True)
59
-
60
- # 4. Training
61
- model = FastLanguageModel.get_peft_model(
62
- model,
63
- r=16,
64
- target_modules=["q_proj","k_proj","v_proj","o_proj",
65
- "gate_proj","up_proj","down_proj"],
66
- lora_alpha=16,
67
- lora_dropout=0,
68
- bias="none",
69
- use_gradient_checkpointing="unsloth",
70
- random_state=3407,
71
- use_rslora=False,
72
- loftq_config=None,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  )
 
74
 
75
- trainer = SFTTrainer(
76
- model=model,
77
- tokenizer=tokenizer,
78
- train_dataset=train_dataset,
79
- eval_dataset=valid_dataset,
80
- dataset_text_field="text",
81
- max_seq_length=max_seq_length,
82
- dataset_num_proc=2,
83
- packing=False,
84
- args=TrainingArguments(
85
- per_device_train_batch_size=2,
86
- gradient_accumulation_steps=4,
87
- warmup_steps=5,
88
- max_steps=100,
89
- learning_rate=2e-4,
90
- fp16=not is_bfloat16_supported(),
91
- bf16=is_bfloat16_supported(),
92
- logging_steps=1,
93
- evaluation_strategy="steps",
94
- eval_steps=10,
95
- optim="adamw_8bit",
96
- weight_decay=0.01,
97
- lr_scheduler_type="linear",
98
- seed=3407,
99
- output_dir="outputs",
100
- ),
101
- )
102
 
103
- gpu_stats = torch.cuda.get_device_properties(0)
104
- start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024**3, 3)
105
- max_memory = round(gpu_stats.total_memory / 1024**3, 3)
106
- print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
107
- print(f"{start_gpu_memory} GB of memory reserved.")
108
-
109
- trainer_stats = trainer.train()
110
-
111
- used_memory = round(torch.cuda.max_memory_reserved() / 1024**3, 3)
112
- used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
113
- used_percentage = round(used_memory / max_memory * 100, 3)
114
- lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
115
-
116
- print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
117
- print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.")
118
- print(f"Peak reserved memory = {used_memory} GB.")
119
- print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
120
- print(f"Peak reserved memory % of max memory = {used_percentage} %.")
121
- print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
122
-
123
- # Evaluation
124
- eval_stats = trainer.evaluate(eval_dataset=valid_dataset)
125
- print(f"Validation Loss: {eval_stats['eval_loss']}")
126
- if "eval_accuracy" in eval_stats:
127
- print(f"Validation Accuracy: {eval_stats['eval_accuracy']}")
128
-
129
- # 5. After Training
130
- FastLanguageModel.for_inference(model)
131
- inputs = tokenizer(
132
- [
133
- alpaca_prompt.format(instruction, input, "")
134
- ], return_tensors="pt"
135
- ).to("cuda")
136
- text_streamer = TextStreamer(tokenizer)
137
- _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=1000)
138
-
139
- # 6. Saving
140
- model.save_pretrained("lora_model")
141
- tokenizer.save_pretrained("lora_model")
142
- model.push_to_hub(huggingface_model_name, token=os.getenv("HF_TOKEN"))
143
- tokenizer.push_to_hub(huggingface_model_name, token=os.getenv("HF_TOKEN"))
144
- if True:
145
- model.save_pretrained_merged("model", tokenizer, save_method="merged_16bit")
146
- if True:
147
- model.push_to_hub_merged(huggingface_model_name, tokenizer, save_method="merged_16bit", token=os.getenv("HF_TOKEN"))
148
-
149
- # # Merge to 4bit
150
- # if True:
151
- # model.save_pretrained_merged("model", tokenizer, save_method="merged_4bit")
152
- # if True:
153
- # model.push_to_hub_merged(huggingface_model_name, tokenizer, save_method="merged_4bit", token=os.getenv("HF_TOKEN")
154
-
155
- # 0.4 Launch training inside this same script/notebook using multiple GPUs
156
- notebook_launcher(train, num_processes=2) # or however many GPUs you have
 
1
+ #0.1 Install Dependencies
2
+ !pip install unsloth torch transformers datasets trl huggingface_hub
3
+
4
+ #0.2 Import Dependencies
5
+ from unsloth import FastLanguageModel
6
  import torch
7
+ import os
8
+ from transformers import TextStreamer
9
  from datasets import load_dataset
10
  from trl import SFTTrainer
11
+ from transformers import TrainingArguments
12
+ from unsloth import is_bfloat16_supported
13
+
14
+ # 1. Configuration
15
+ max_seq_length = 2048
16
+ dtype = None
17
+ load_in_4bit = True
18
+
19
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
20
+
21
+ ### Instruction:
22
+ {}
23
+
24
+ ### Input:
25
+ {}
26
+
27
+ ### Response:
28
+ {}"""
29
+
30
+ instruction = """This assistant is trained to code executive ranks and roles along the following categories with 1 or 0.
31
+
32
+ Ranks:
33
+ - VP: 1 if Vice President (VP), 0 otherwise
34
+ - SVP: 1 if Senior Vice President (SVP), 0 otherwise
35
+ - EVP: 1 if Executive Vice President (EVP), 0 otherwise
36
+ - SEVP: 1 if Senior Executive Vice President (SEVP), 0 otherwise
37
+ - Director: 1 if Director, 0 otherwise
38
+ - Senior Director: 1 if Senior Director, 0 otherwise
39
+ - MD: 1 if Managing Director (MD), 0 otherwise
40
+ - SMD: 1 if Senior Managing Director (SMD), 0 otherwise
41
+ - SE: 1 if Senior Executive, 0 otherwise
42
+ - VC: 1 if Vice Chair (VC), 0 otherwise
43
+ - SVC: 1 if Senior Vice Chair (SVC), 0 otherwise
44
+ - President: 1 if President of the parent company, 0 when President of subsidiary or division but not parent company.
45
+
46
+ Roles:
47
+ - Board: 1 when role suggests person is a member of the board of directors, 0 otherwise
48
+ - CEO: 1 when Chief Executive Officer of parent company, 0 when Chief Executive Officer of a subsidiary but not parent company.
49
+ - CXO: 1 when C-Suite title, i.e., Chief X Officer, where X can be any type of designation, 0 otherwise. Chief Executive Officer of the parent company. Not Chief AND Officer, e.g., only officer of a function.
50
+ - Primary: 1 when responsible for primary activity of value chain, i.e., Supply Chain, Manufacturing, Operations, Marketing & Sales, Customer Service and alike, 0 when not a primary value chain activity.
51
+ - Support: 1 when responsible for a support activity of the value chain, i.e., Procurement, IT, HR, Management, Strategy, HR, Finance, Legal, R&D, Investor Relations, Technology, General Counsel and alike, 0 when not support activity of the value.
52
+ - BU: 1 when involved with an entity/distinct unit responsible for Product, Customer, or Geographical domain/unit; or role is about a subsidiary, 0 when responsibility is not for a specific product/customer/geography area but, for example, for the entire parent company."""
53
+ input = "In 2015 the company 'cms' had an executive with the name david mengebier, whose official role title was: 'senior vice president, cms energy and consumers energy'."
54
+ huggingface_model_name = "daresearch/Llama-3.1"
55
+
56
+
57
+ # 2. Before Training
58
+ model, tokenizer = FastLanguageModel.from_pretrained(
59
+ model_name = "unsloth/Meta-Llama-3.1-8B-bnb-4bit",
60
+ max_seq_length = max_seq_length,
61
+ dtype = dtype,
62
+ load_in_4bit = load_in_4bit,
63
+ token = os.getenv("HF_TOKEN")
64
+ )
65
+
66
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
67
+ inputs = tokenizer(
68
+ [
69
+ alpaca_prompt.format(
70
+ instruction, # instruction
71
+ input, # input
72
+ "", # output - leave this blank for generation!
73
  )
74
+ ], return_tensors = "pt").to("cuda")
75
+
76
+ text_streamer = TextStreamer(tokenizer)
77
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000)
78
+
79
+ # 3. Load data
80
+
81
+ EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
82
+ def formatting_prompts_func(examples):
83
+ instructions = examples["instruction"]
84
+ inputs = examples["input"]
85
+ outputs = examples["output"]
86
+ texts = []
87
+ for instruction, input, output in zip(instructions, inputs, outputs):
88
+ text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
89
+ texts.append(text)
90
+ return { "text" : texts, }
91
+ pass
92
+ #dataset = load_dataset("daresearch/orgdatabase-training0-data", split = "train")
93
+ #dataset = dataset.map(formatting_prompts_func, batched = True,)
94
+
95
+
96
+ # Load train and validation datasets
97
+ train_dataset = load_dataset("csv", data_files="train.csv", split="train")
98
+ valid_dataset = load_dataset("csv", data_files="valid.csv", split="train")
99
+
100
+ # Apply formatting to both datasets
101
+ train_dataset = train_dataset.map(formatting_prompts_func, batched=True)
102
+ valid_dataset = valid_dataset.map(formatting_prompts_func, batched=True)
103
+
104
+
105
+ # 4. Training
106
+ model = FastLanguageModel.get_peft_model(
107
+ model,
108
+ r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
109
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
110
+ "gate_proj", "up_proj", "down_proj"],
111
+ lora_alpha=16,
112
+ lora_dropout=0, # Supports any, but = 0 is optimized
113
+ bias="none", # Supports any, but = "none" is optimized
114
+ use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
115
+ random_state=3407,
116
+ use_rslora=False, # We support rank stabilized LoRA
117
+ loftq_config=None, # And LoftQ
118
+ )
119
+
120
+ trainer = SFTTrainer(
121
+ model=model,
122
+ tokenizer=tokenizer,
123
+ train_dataset=train_dataset, # Updated to use train_dataset
124
+ eval_dataset=valid_dataset, # Added eval_dataset for validation
125
+ dataset_text_field="text",
126
+ max_seq_length=max_seq_length,
127
+ dataset_num_proc=2,
128
+ packing=False, # Can make training 5x faster for short sequences.
129
+ args=TrainingArguments(
130
+ per_device_train_batch_size=2,
131
+ gradient_accumulation_steps=4,
132
+ warmup_steps=5,
133
+ max_steps=100,
134
+ learning_rate=2e-4,
135
+ fp16=not is_bfloat16_supported(),
136
+ bf16=is_bfloat16_supported(),
137
+ logging_steps=1,
138
+ evaluation_strategy="steps", # Enables evaluation during training
139
+ eval_steps=10, # Frequency of evaluation
140
+ optim="adamw_8bit",
141
+ weight_decay=0.01,
142
+ lr_scheduler_type="linear",
143
+ seed=3407,
144
+ output_dir="outputs",
145
+ ),
146
+ )
147
+
148
+ # Show current memory stats
149
+ gpu_stats = torch.cuda.get_device_properties(0)
150
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
151
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
152
+ print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
153
+ print(f"{start_gpu_memory} GB of memory reserved.")
154
+
155
+ trainer_stats = trainer.train()
156
+
157
+ # Show final memory and time stats
158
+ used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
159
+ used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
160
+ used_percentage = round(used_memory / max_memory * 100, 3)
161
+ lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
162
+ print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
163
+ print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.")
164
+ print(f"Peak reserved memory = {used_memory} GB.")
165
+ print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
166
+ print(f"Peak reserved memory % of max memory = {used_percentage} %.")
167
+ print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
168
+
169
+ # Optionally evaluate after training if desired
170
+ eval_stats = trainer.evaluate(eval_dataset=valid_dataset)
171
+ print(f"Validation Loss: {eval_stats['eval_loss']}")
172
+ if "eval_accuracy" in eval_stats:
173
+ print(f"Validation Accuracy: {eval_stats['eval_accuracy']}")
174
+
175
+
176
+ # 5. After Training
177
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
178
+ inputs = tokenizer(
179
+ [
180
+ alpaca_prompt.format(
181
+ instruction, # instruction
182
+ input, # input
183
+ "", # output - leave this blank for generation!
184
  )
185
+ ], return_tensors = "pt").to("cuda")
186
 
187
+ text_streamer = TextStreamer(tokenizer)
188
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000)
189
+
190
+
191
+ # 6. Saving
192
+ model.save_pretrained("lora_model") # Local saving
193
+ tokenizer.save_pretrained("lora_model")
194
+ model.push_to_hub(huggingface_model_name, token = os.getenv("HF_TOKEN"))
195
+ tokenizer.push_to_hub(huggingface_model_name, token = os.getenv("HF_TOKEN"))
196
+
197
+ # Merge to 16bit
198
+ if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
199
+ if True: model.push_to_hub_merged(huggingface_model_name, tokenizer, save_method = "merged_16bit", token = os.getenv("HF_TOKEN"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
+ # # Merge to 4bit
202
+ #if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
203
+ #if True: model.push_to_hub_merged(huggingface_model_name, tokenizer, save_method = "merged_4bit", token = os.getenv("HF_TOKEN"))