Spaces:
Sleeping
Sleeping
Upload 12 files
Browse files- model-deployment-038/__pycache__/eda.cpython-39.pyc +0 -0
- model-deployment-038/__pycache__/prediction.cpython-39.pyc +0 -0
- model-deployment-038/app.py +11 -0
- model-deployment-038/eda.py +59 -0
- model-deployment-038/encoder.pkl +3 -0
- model-deployment-038/list_cat_cols.txt +1 -0
- model-deployment-038/list_num_cols.txt +1 -0
- model-deployment-038/model_lin_reg.pkl +3 -0
- model-deployment-038/prediction.py +92 -0
- model-deployment-038/requirements.txt +8 -0
- model-deployment-038/scaler.pkl +3 -0
- model-deployment-038/soccer.jpg +0 -0
model-deployment-038/__pycache__/eda.cpython-39.pyc
ADDED
Binary file (1.66 kB). View file
|
|
model-deployment-038/__pycache__/prediction.cpython-39.pyc
ADDED
Binary file (2.46 kB). View file
|
|
model-deployment-038/app.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
halaman = st.sidebar.selectbox('Pilih Halaman : ', ('EDA', 'Predict A Player'))
|
6 |
+
|
7 |
+
if halaman == 'EDA':
|
8 |
+
eda.run()
|
9 |
+
|
10 |
+
else:
|
11 |
+
prediction.run()
|
model-deployment-038/eda.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
from PIL import Image
|
5 |
+
import plotly.express as px
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def run():
|
12 |
+
|
13 |
+
# Membuat Title
|
14 |
+
st.title('Aplikasi Prediksi Rating Pemain FIFA 2022')
|
15 |
+
|
16 |
+
# Membuat Sub Header
|
17 |
+
st.subheader('Page mengenai Exploratory Data Analysis dari dataset FIFA 2022')
|
18 |
+
|
19 |
+
# Menambahkan Gambar
|
20 |
+
image = Image.open('soccer.jpg')
|
21 |
+
st.image(image, caption='FIFA 2022')
|
22 |
+
|
23 |
+
# Menambahkan Teks
|
24 |
+
st.write('Page ini dibuat oleh ***Danu Purnomo***')
|
25 |
+
st.write('# Halo')
|
26 |
+
st.write('## Halo')
|
27 |
+
st.write('### Halo')
|
28 |
+
|
29 |
+
# Show DataFrame
|
30 |
+
data = pd.read_csv('https://raw.githubusercontent.com/FTDS-learning-materials/phase-1/master/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
|
31 |
+
st.dataframe(data)
|
32 |
+
|
33 |
+
# Membuat Bar Plot
|
34 |
+
st.write('#### Plot AttackingWorkRate')
|
35 |
+
fig = plt.figure(figsize=(15, 5))
|
36 |
+
sns.countplot(x='AttackingWorkRate', data=data)
|
37 |
+
st.pyplot(fig)
|
38 |
+
|
39 |
+
# Membuat Histogram
|
40 |
+
st.write('#### Histogram of Rating')
|
41 |
+
fig = plt.figure(figsize=(15, 5))
|
42 |
+
sns.histplot(data['Overall'], bins=30, kde=True)
|
43 |
+
st.pyplot(fig)
|
44 |
+
|
45 |
+
# Membuat Histogram Berdasarkan Input User
|
46 |
+
st.write('#### Histogram berdasarkan input user')
|
47 |
+
pilihan = st.selectbox('Pilih column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
|
48 |
+
fig = plt.figure(figsize=(15, 5))
|
49 |
+
sns.histplot(data[pilihan], bins=30, kde=True)
|
50 |
+
st.pyplot(fig)
|
51 |
+
|
52 |
+
# Membuat Plotly Plot
|
53 |
+
st.write('#### Plotly Plot - ValueEUR dengan Overall')
|
54 |
+
fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name', 'Age'])
|
55 |
+
st.plotly_chart(fig)
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
run()
|
model-deployment-038/encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:983eb55948c85a6ed10ef56a1b9da005da09261c6fd6ac8f6d6dc38ea343e2ee
|
3 |
+
size 636
|
model-deployment-038/list_cat_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["AttackingWorkRate", "DefensiveWorkRate"]
|
model-deployment-038/list_num_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["Age", "Height", "Weight", "Price", "PaceTotal", "ShootingTotal", "PassingTotal", "DribblingTotal", "DefendingTotal", "PhysicalityTotal"]
|
model-deployment-038/model_lin_reg.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9da3168e15beff16b96ae2a8d8f53f3f18ab3d9a660b803f5aec1811f1460249
|
3 |
+
size 595
|
model-deployment-038/prediction.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title='FIFA 2022',
|
9 |
+
layout='wide',
|
10 |
+
initial_sidebar_state='expanded'
|
11 |
+
)
|
12 |
+
|
13 |
+
#Load files
|
14 |
+
|
15 |
+
with open('list_cat_cols.txt', 'r') as file_1:
|
16 |
+
list_cat_cols = json.load(file_1)
|
17 |
+
|
18 |
+
with open('list_num_cols.txt', 'r') as file_2:
|
19 |
+
list_num_cols = json.load(file_2)
|
20 |
+
|
21 |
+
with open('encoder.pkl', 'rb') as file_3:
|
22 |
+
encoder = pickle.load(file_3)
|
23 |
+
|
24 |
+
with open('scaler.pkl', 'rb') as file_4:
|
25 |
+
scaler = pickle.load(file_4)
|
26 |
+
|
27 |
+
with open('model_lin_reg.pkl', 'rb') as file_5:
|
28 |
+
model_lin_reg = pickle.load(file_5)
|
29 |
+
|
30 |
+
|
31 |
+
def run():
|
32 |
+
# Membuat Form
|
33 |
+
with st.form(key='form_fifa_2022'):
|
34 |
+
name = st.text_input('Name', value='')
|
35 |
+
age = st.number_input('Age', min_value=16, max_value=60, value=25, step=1, help='Usia Pemain')
|
36 |
+
weight = st.number_input('Weight', min_value=50, max_value=150, value=70)
|
37 |
+
height = st.slider('Height', 50, 250, 170)
|
38 |
+
price = st.number_input('Price', min_value=0, max_value=1000000000, value=0)
|
39 |
+
st.markdown('---')
|
40 |
+
|
41 |
+
attacking_work_rate = st.selectbox('AttackingWorkRate', ('Low', 'Medium', 'High'), index=0)
|
42 |
+
defensive_work_rate = st.radio('DefensiveWorkRate', ('Low', 'Medium', 'High'), index=1)
|
43 |
+
st.markdown('---')
|
44 |
+
|
45 |
+
pace = st.number_input('Kecepatan Lari', min_value=0, max_value=100, value=50)
|
46 |
+
shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50)
|
47 |
+
passing = st.number_input('Passing', min_value=0, max_value=100, value=50)
|
48 |
+
dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50)
|
49 |
+
defending = st.number_input('Defending', min_value=0, max_value=100, value=50)
|
50 |
+
physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50)
|
51 |
+
|
52 |
+
submitted = st.form_submit_button('Predict')
|
53 |
+
|
54 |
+
data_inf = {
|
55 |
+
'Name': name,
|
56 |
+
'Age': age,
|
57 |
+
'Height': height,
|
58 |
+
'Weight': weight,
|
59 |
+
'Price': price,
|
60 |
+
'AttackingWorkRate': attacking_work_rate,
|
61 |
+
'DefensiveWorkRate': defensive_work_rate,
|
62 |
+
'PaceTotal': pace,
|
63 |
+
'ShootingTotal': shooting,
|
64 |
+
'PassingTotal': passing,
|
65 |
+
'DribblingTotal': dribbling,
|
66 |
+
'DefendingTotal': defending,
|
67 |
+
'PhysicalityTotal': physicality
|
68 |
+
}
|
69 |
+
data_inf = pd.DataFrame([data_inf])
|
70 |
+
st.dataframe(data_inf)
|
71 |
+
|
72 |
+
if submitted:
|
73 |
+
#split between categorical and numerical
|
74 |
+
data_inf_num = data_inf[list_num_cols]
|
75 |
+
data_inf_cat = data_inf[list_cat_cols]
|
76 |
+
|
77 |
+
#Scaling and Encoding
|
78 |
+
data_inf_scaled = scaler.transform(data_inf_num)
|
79 |
+
data_inf_encoded = encoder.transform(data_inf_cat)
|
80 |
+
data_inf_final = np.concatenate([data_inf_scaled, data_inf_encoded], axis = 1)
|
81 |
+
|
82 |
+
#predict using linreg
|
83 |
+
y_pred_inf = model_lin_reg.predict(data_inf_final)
|
84 |
+
|
85 |
+
st.write('# Rating : ', str(int(y_pred_inf)))
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == '__main__':
|
92 |
+
run()
|
model-deployment-038/requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
seaborn
|
5 |
+
matplotlib
|
6 |
+
plotly
|
7 |
+
pillow
|
8 |
+
scikit-learn==1.5.2
|
model-deployment-038/scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ecd617314342916b5738cf62db3df623b8a987d995cf442719cd4d5d4d55c7c
|
3 |
+
size 1096
|
model-deployment-038/soccer.jpg
ADDED
![]() |