File size: 1,757 Bytes
cb701c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import streamlit as st
import pandas as pd
import seaborn as sns
from PIL import Image
import plotly.express as px
import matplotlib.pyplot as plt




def run():

    # Membuat Title
    st.title('Aplikasi Prediksi Rating Pemain FIFA 2022')

    # Membuat Sub Header
    st.subheader('Page mengenai Exploratory Data Analysis dari dataset FIFA 2022')

    # Menambahkan Gambar
    image = Image.open('soccer.jpg')
    st.image(image, caption='FIFA 2022')

    # Menambahkan Teks
    st.write('Page ini dibuat oleh ***Danu Purnomo***')
    st.write('# Halo')
    st.write('## Halo')
    st.write('### Halo')

    # Show DataFrame
    data = pd.read_csv('https://raw.githubusercontent.com/FTDS-learning-materials/phase-1/master/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
    st.dataframe(data)

    # Membuat Bar Plot
    st.write('#### Plot AttackingWorkRate')
    fig = plt.figure(figsize=(15, 5))
    sns.countplot(x='AttackingWorkRate', data=data)
    st.pyplot(fig)

    # Membuat Histogram
    st.write('#### Histogram of Rating')
    fig = plt.figure(figsize=(15, 5))
    sns.histplot(data['Overall'], bins=30, kde=True)
    st.pyplot(fig)

    # Membuat Histogram Berdasarkan Input User
    st.write('#### Histogram berdasarkan input user')
    pilihan = st.selectbox('Pilih column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
    fig = plt.figure(figsize=(15, 5))
    sns.histplot(data[pilihan], bins=30, kde=True)
    st.pyplot(fig)

    # Membuat Plotly Plot
    st.write('#### Plotly Plot - ValueEUR dengan Overall')
    fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name', 'Age'])
    st.plotly_chart(fig)


if __name__ == '__main__':
    run()