Spaces:
Runtime error
Runtime error
metric.py
Browse files- README.md +7 -1
- span_metric.py +123 -0
README.md
CHANGED
@@ -7,6 +7,12 @@ sdk: gradio
|
|
7 |
sdk_version: 4.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
7 |
sdk_version: 4.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
+
description: >-
|
14 |
+
This metric calculates both Token Overlap and Span Agreement precision, recall and f1 scores.
|
15 |
---
|
16 |
|
17 |
+
## Description
|
18 |
+
This metric calculates both Token Overlap and Span Agreement precision, recall and f1 scores. This script is adapted from seqeval.
|
span_metric.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""This metric calculates both Token Overlap and Span Agreement precision, recall and f1 scores."""
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
_CITATION = """\
|
21 |
+
@inproceedings{morante-blanco-2012-sem,
|
22 |
+
title = "*{SEM} 2012 Shared Task: Resolving the Scope and Focus of Negation",
|
23 |
+
author = "Morante, Roser and Blanco, Eduardo",
|
24 |
+
booktitle = "*{SEM} 2012: The First Joint Conference on Lexical and Computational Semantics {--} Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation ({S}em{E}val 2012)",
|
25 |
+
month = "7-8 " # jun,
|
26 |
+
year = "2012",
|
27 |
+
address = "Montr{\'e}al, Canada",
|
28 |
+
publisher = "Association for Computational Linguistics",
|
29 |
+
url = "https://aclanthology.org/S12-1035",
|
30 |
+
pages = "265--274",
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
# TODO: Add description of the metric here
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
This metric calculates both Token Overlap and Span Agreement precision, recall and f1 scores. This script is adapted from seqeval.
|
37 |
+
"""
|
38 |
+
|
39 |
+
|
40 |
+
# TODO: Add description of the arguments of the metric here
|
41 |
+
_KWARGS_DESCRIPTION = """
|
42 |
+
Calculates how good are predictions given some references, using certain scores
|
43 |
+
Args:
|
44 |
+
predictions: List of List of predicted labels.
|
45 |
+
references: List of List of reference labels.
|
46 |
+
Returns:
|
47 |
+
'token_precision': precision,
|
48 |
+
'token_recall': recall,
|
49 |
+
'token_f1': F1 score for token overlap
|
50 |
+
|
51 |
+
'span_precision': precision,
|
52 |
+
'span_recall': recall,
|
53 |
+
'span_f1': F1 score for span agreement
|
54 |
+
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
59 |
+
class SpanAgree(datasets.Metric):
|
60 |
+
"""Calculates span agreement metric."""
|
61 |
+
|
62 |
+
def _info(self):
|
63 |
+
return datasets.MetricInfo(
|
64 |
+
description=_DESCRIPTION,
|
65 |
+
citation=_CITATION,
|
66 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
67 |
+
|
68 |
+
features=datasets.Features({
|
69 |
+
'predictions': datasets.Sequence(datasets.Value("int8", id="label"), id="sequence"),
|
70 |
+
"references": datasets.Sequence(datasets.Value("int8", id="label"), id="sequence"),
|
71 |
+
}),
|
72 |
+
|
73 |
+
homepage="https://github.com/dannashao",
|
74 |
+
codebase_urls=["https://github.com/dannashao"],
|
75 |
+
reference_urls=["https://github.com/dannashao"]
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def _compute(self, predictions, references):
|
80 |
+
"""Returns the scores"""
|
81 |
+
# TOKEN LEVEL
|
82 |
+
tn, fp, fn, tp = 0,0,0,0
|
83 |
+
for span_true, span_pred in zip(references, predictions):
|
84 |
+
for token_true, token_pred in zip(span_true, span_pred):
|
85 |
+
if token_true == 1:
|
86 |
+
if token_pred == 1:
|
87 |
+
tp += 1
|
88 |
+
else:
|
89 |
+
fn += 1
|
90 |
+
else:
|
91 |
+
if token_pred == 1:
|
92 |
+
fp += 1
|
93 |
+
else:
|
94 |
+
tn += 1
|
95 |
+
precision = tp / (tp + fp) if tp + fp > 0 else 0
|
96 |
+
recall = tp / (tp + fn) if tp + fn > 0 else 0
|
97 |
+
f1 = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
|
98 |
+
|
99 |
+
# SPAN LEVEL
|
100 |
+
tn, fp, fn, tp = 0,0,0,0
|
101 |
+
for span_true, span_pred in zip(references, predictions):
|
102 |
+
if 1 in span_true:
|
103 |
+
if span_true == span_pred:
|
104 |
+
tp += 1
|
105 |
+
elif all([(yt == 0 or (yt == 1 and predictions[i] == 1)) for i, yt in enumerate(references)]):
|
106 |
+
fp += 1
|
107 |
+
else:
|
108 |
+
fp += 1
|
109 |
+
fn += 1
|
110 |
+
else:
|
111 |
+
if 1 in span_pred:
|
112 |
+
fp += 1
|
113 |
+
fn += 1
|
114 |
+
else:
|
115 |
+
tn += 1
|
116 |
+
|
117 |
+
span_precision = tp / (tp + fp) if tp + fp > 0 else 0
|
118 |
+
span_recall = tp / (tp + fn) if tp + fn > 0 else 0
|
119 |
+
span_f1 = 2 * (span_precision * span_recall) / (span_precision + span_recall) if span_precision + span_recall > 0 else 0
|
120 |
+
|
121 |
+
scores = {"token_precision":precision, "token_recall":recall, "token_f1":f1,
|
122 |
+
"span_precision":span_precision, "span_recall":span_recall, "span_f1":span_f1}
|
123 |
+
return scores
|