Spaces:
Runtime error
Runtime error
File size: 4,220 Bytes
5d52c32 6c226f9 8e787d3 6c226f9 d790c0b 88183ad 6c226f9 a5bfe25 9d6fa91 66efbc3 d790c0b 6c226f9 5d52c32 3c0cd8e 6c226f9 244af64 3c0cd8e 244af64 3c0cd8e 244af64 3c0cd8e 244af64 d790c0b 5d52c32 66efbc3 6c226f9 66efbc3 d790c0b 6c226f9 b97a3c2 0a7fcda 244af64 beeb55d 6c226f9 244af64 beeb55d 244af64 6c226f9 3ce82e9 3c0cd8e beeb55d 1fbf59c 3c0cd8e 3ce82e9 6c226f9 beeb55d a5bfe25 6c226f9 b95b5ca 6c226f9 7097513 3ce82e9 7097513 beeb55d a5bfe25 6c226f9 b95b5ca 6c226f9 3c0cd8e 6c226f9 ab14d7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps="word")
text = result["text"]
timestamps = result["chunks"] # each chunk contains the word and its timestamps
word_timestamps = []
for chunk in timestamps:
for word_info in chunk["words"]:
word_timestamps.append(f"{word_info['word']} [{word_info['start']}-{word_info['end']}]")
return "\n".join(word_timestamps)
@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps="word")
text = result["text"]
timestamps = result["chunks"]
word_timestamps = []
for chunk in timestamps:
for word_info in chunk["words"]:
word_timestamps.append(f"{word_info['word']} [{word_info['start']}-{word_info['end']}]")
return html_embed_str, "\n".join(word_timestamps)
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs=["text", "text"], # Output both text and timestamps
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs=["text", "text"], # Output both text and timestamps
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
],
outputs=["html", "text", "text"], # Output both text and timestamps
title="Whisper Large V3: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch()
|