Spaces:
Runtime error
Runtime error
File size: 6,321 Bytes
3b909cb fe525fc 3b909cb bc5914e 3b909cb eb456f3 3b909cb eb456f3 3b909cb eb456f3 3b909cb eb456f3 3b909cb eb456f3 3b909cb eb456f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state):
if is_gray:
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
#model_pool = '/FBCNN/model_zoo' # fixed
#model_path = os.path.join(model_pool, model_name)
model_path = model_name
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if (not enable_zoom) or (state[1] is None):
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
# ------------------------------------
# (1) img_L
# ------------------------------------
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image) # PIL to open cv image
img = np.expand_dims(open_cv_image, axis=2) # HxWx1
elif n_channels == 3:
open_cv_image = np.array(input_img) # PIL to open cv image
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB
img_L = util.uint2tensor4(open_cv_image)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
img_E,QF = model(img_L)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
img_E,QF = model(img_L, qf_input)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
if (state[1] is not None) and enable_zoom:
img_E = state[1]
out_img = Image.fromarray(img_E)
out_img_w, out_img_h = out_img.size # output image size
zoom = zoom/100
x_shift = x_shift/100
y_shift = y_shift/100
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift)
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift)
if (state[0] is None) or not enable_zoom:
in_img = Image.fromarray(input_img)
state[0] = input_img
else:
in_img = Image.fromarray(state[0])
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
return img_E, in_img, out_img, [state[0],img_E]
interface = gr.Interface(
fn = inference,
inputs = [gr.inputs.Image(),
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"),
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = more JPEG artifact removal)"),
gr.inputs.Checkbox(default=False, label="Edit Zoom preview \n(This is optional. "
"Check this after the image result is loaded to edit zoom parameters\n"
"without processing the input image.)"),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image \n"
"(Use this to see the image quality up close. \n"
"100 = original size)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift \n"
"(Increase to shift to the right)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift \n"
"(Increase to shift downwards)"),
gr.inputs.State(default=[None,None])
],
outputs = [gr.outputs.Image(label="Result"),
gr.outputs.Image(label="Before:"),
gr.outputs.Image(label="After:"),
"state"],
examples = [["doraemon.jpg",False,60,False,42,50,50],
["tomandjerry.jpg",False,60,False,40,57,44],
["somepanda.jpg",True,100,False,30,8,24],
["cemetry.jpg",False,70,False,20,44,77],
["michelangelo_david.jpg",True,30,False,12,53,27],
["elon_musk.jpg",False,45,False,15,33,30]],
allow_flagging=False
).launch(enable_queue=True) |