Spaces:
Runtime error
Runtime error
File size: 14,400 Bytes
34d1ef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
from collections import OrderedDict
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.models as models
'''
# --------------------------------------------
# Advanced nn.Sequential
# https://github.com/xinntao/BasicSR
# --------------------------------------------
'''
def sequential(*args):
"""Advanced nn.Sequential.
Args:
nn.Sequential, nn.Module
Returns:
nn.Sequential
"""
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError('sequential does not support OrderedDict input.')
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
# --------------------------------------------
# return nn.Sequantial of (Conv + BN + ReLU)
# --------------------------------------------
def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CBR', negative_slope=0.2):
L = []
for t in mode:
if t == 'C':
L.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
elif t == 'T':
L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
elif t == 'B':
L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=1e-04, affine=True))
elif t == 'I':
L.append(nn.InstanceNorm2d(out_channels, affine=True))
elif t == 'R':
L.append(nn.ReLU(inplace=True))
elif t == 'r':
L.append(nn.ReLU(inplace=False))
elif t == 'L':
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True))
elif t == 'l':
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False))
elif t == '2':
L.append(nn.PixelShuffle(upscale_factor=2))
elif t == '3':
L.append(nn.PixelShuffle(upscale_factor=3))
elif t == '4':
L.append(nn.PixelShuffle(upscale_factor=4))
elif t == 'U':
L.append(nn.Upsample(scale_factor=2, mode='nearest'))
elif t == 'u':
L.append(nn.Upsample(scale_factor=3, mode='nearest'))
elif t == 'v':
L.append(nn.Upsample(scale_factor=4, mode='nearest'))
elif t == 'M':
L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0))
elif t == 'A':
L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
else:
raise NotImplementedError('Undefined type: '.format(t))
return sequential(*L)
# --------------------------------------------
# Res Block: x + conv(relu(conv(x)))
# --------------------------------------------
class ResBlock(nn.Module):
def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', negative_slope=0.2):
super(ResBlock, self).__init__()
assert in_channels == out_channels, 'Only support in_channels==out_channels.'
if mode[0] in ['R', 'L']:
mode = mode[0].lower() + mode[1:]
self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
def forward(self, x):
res = self.res(x)
return x + res
# --------------------------------------------
# conv + subp (+ relu)
# --------------------------------------------
def upsample_pixelshuffle(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
up1 = conv(in_channels, out_channels * (int(mode[0]) ** 2), kernel_size, stride, padding, bias, mode='C'+mode, negative_slope=negative_slope)
return up1
# --------------------------------------------
# nearest_upsample + conv (+ R)
# --------------------------------------------
def upsample_upconv(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR'
if mode[0] == '2':
uc = 'UC'
elif mode[0] == '3':
uc = 'uC'
elif mode[0] == '4':
uc = 'vC'
mode = mode.replace(mode[0], uc)
up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode, negative_slope=negative_slope)
return up1
# --------------------------------------------
# convTranspose (+ relu)
# --------------------------------------------
def upsample_convtranspose(in_channels=64, out_channels=3, kernel_size=2, stride=2, padding=0, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
kernel_size = int(mode[0])
stride = int(mode[0])
mode = mode.replace(mode[0], 'T')
up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
return up1
'''
# --------------------------------------------
# Downsampler
# Kai Zhang, https://github.com/cszn/KAIR
# --------------------------------------------
# downsample_strideconv
# downsample_maxpool
# downsample_avgpool
# --------------------------------------------
'''
# --------------------------------------------
# strideconv (+ relu)
# --------------------------------------------
def downsample_strideconv(in_channels=64, out_channels=64, kernel_size=2, stride=2, padding=0, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
kernel_size = int(mode[0])
stride = int(mode[0])
mode = mode.replace(mode[0], 'C')
down1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
return down1
# --------------------------------------------
# maxpooling + conv (+ relu)
# --------------------------------------------
def downsample_maxpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=0, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
kernel_size_pool = int(mode[0])
stride_pool = int(mode[0])
mode = mode.replace(mode[0], 'MC')
pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0], negative_slope=negative_slope)
pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:], negative_slope=negative_slope)
return sequential(pool, pool_tail)
# --------------------------------------------
# averagepooling + conv (+ relu)
# --------------------------------------------
def downsample_avgpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
kernel_size_pool = int(mode[0])
stride_pool = int(mode[0])
mode = mode.replace(mode[0], 'AC')
pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0], negative_slope=negative_slope)
pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:], negative_slope=negative_slope)
return sequential(pool, pool_tail)
class QFAttention(nn.Module):
def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', negative_slope=0.2):
super(QFAttention, self).__init__()
assert in_channels == out_channels, 'Only support in_channels==out_channels.'
if mode[0] in ['R', 'L']:
mode = mode[0].lower() + mode[1:]
self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
def forward(self, x, gamma, beta):
gamma = gamma.unsqueeze(-1).unsqueeze(-1)
beta = beta.unsqueeze(-1).unsqueeze(-1)
res = (gamma)*self.res(x) + beta
return x + res
class FBCNN(nn.Module):
def __init__(self, in_nc=3, out_nc=3, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode='strideconv',
upsample_mode='convtranspose'):
super(FBCNN, self).__init__()
self.m_head = conv(in_nc, nc[0], bias=True, mode='C')
self.nb = nb
self.nc = nc
# downsample
if downsample_mode == 'avgpool':
downsample_block = downsample_avgpool
elif downsample_mode == 'maxpool':
downsample_block = downsample_maxpool
elif downsample_mode == 'strideconv':
downsample_block = downsample_strideconv
else:
raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode))
self.m_down1 = sequential(
*[ResBlock(nc[0], nc[0], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
downsample_block(nc[0], nc[1], bias=True, mode='2'))
self.m_down2 = sequential(
*[ResBlock(nc[1], nc[1], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
downsample_block(nc[1], nc[2], bias=True, mode='2'))
self.m_down3 = sequential(
*[ResBlock(nc[2], nc[2], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
downsample_block(nc[2], nc[3], bias=True, mode='2'))
self.m_body_encoder = sequential(
*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)])
self.m_body_decoder = sequential(
*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)])
# upsample
if upsample_mode == 'upconv':
upsample_block = upsample_upconv
elif upsample_mode == 'pixelshuffle':
upsample_block = upsample_pixelshuffle
elif upsample_mode == 'convtranspose':
upsample_block = upsample_convtranspose
else:
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
self.m_up3 = nn.ModuleList([upsample_block(nc[3], nc[2], bias=True, mode='2'),
*[QFAttention(nc[2], nc[2], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
self.m_up2 = nn.ModuleList([upsample_block(nc[2], nc[1], bias=True, mode='2'),
*[QFAttention(nc[1], nc[1], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
self.m_up1 = nn.ModuleList([upsample_block(nc[1], nc[0], bias=True, mode='2'),
*[QFAttention(nc[0], nc[0], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
self.m_tail = conv(nc[0], out_nc, bias=True, mode='C')
self.qf_pred = sequential(*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
torch.nn.AdaptiveAvgPool2d((1,1)),
torch.nn.Flatten(),
torch.nn.Linear(512, 512),
nn.ReLU(),
torch.nn.Linear(512, 512),
nn.ReLU(),
torch.nn.Linear(512, 1),
nn.Sigmoid()
)
self.qf_embed = sequential(torch.nn.Linear(1, 512),
nn.ReLU(),
torch.nn.Linear(512, 512),
nn.ReLU(),
torch.nn.Linear(512, 512),
nn.ReLU()
)
self.to_gamma_3 = sequential(torch.nn.Linear(512, nc[2]),nn.Sigmoid())
self.to_beta_3 = sequential(torch.nn.Linear(512, nc[2]),nn.Tanh())
self.to_gamma_2 = sequential(torch.nn.Linear(512, nc[1]),nn.Sigmoid())
self.to_beta_2 = sequential(torch.nn.Linear(512, nc[1]),nn.Tanh())
self.to_gamma_1 = sequential(torch.nn.Linear(512, nc[0]),nn.Sigmoid())
self.to_beta_1 = sequential(torch.nn.Linear(512, nc[0]),nn.Tanh())
def forward(self, x, qf_input=None):
h, w = x.size()[-2:]
paddingBottom = int(np.ceil(h / 8) * 8 - h)
paddingRight = int(np.ceil(w / 8) * 8 - w)
x = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x)
x1 = self.m_head(x)
x2 = self.m_down1(x1)
x3 = self.m_down2(x2)
x4 = self.m_down3(x3)
x = self.m_body_encoder(x4)
qf = self.qf_pred(x)
x = self.m_body_decoder(x)
qf_embedding = self.qf_embed(qf_input) if qf_input is not None else self.qf_embed(qf)
gamma_3 = self.to_gamma_3(qf_embedding)
beta_3 = self.to_beta_3(qf_embedding)
gamma_2 = self.to_gamma_2(qf_embedding)
beta_2 = self.to_beta_2(qf_embedding)
gamma_1 = self.to_gamma_1(qf_embedding)
beta_1 = self.to_beta_1(qf_embedding)
x = x + x4
x = self.m_up3[0](x)
for i in range(self.nb):
x = self.m_up3[i+1](x, gamma_3,beta_3)
x = x + x3
x = self.m_up2[0](x)
for i in range(self.nb):
x = self.m_up2[i+1](x, gamma_2, beta_2)
x = x + x2
x = self.m_up1[0](x)
for i in range(self.nb):
x = self.m_up1[i+1](x, gamma_1, beta_1)
x = x + x1
x = self.m_tail(x)
x = x[..., :h, :w]
return x, qf
if __name__ == "__main__":
x = torch.randn(1, 3, 96, 96)#.cuda()#.to(torch.device('cuda'))
fbar=FBAR()
y,qf = fbar(x)
print(y.shape,qf.shape)
|