Refactor code to improve readability and add type annotations
Browse files
ham.py
CHANGED
@@ -1,28 +1,19 @@
|
|
|
|
|
|
1 |
from typing import List, Set, Dict, Tuple
|
2 |
|
3 |
|
4 |
-
def
|
5 |
"""
|
6 |
-
|
7 |
|
8 |
Args:
|
9 |
-
|
10 |
-
|
11 |
|
12 |
Returns:
|
13 |
-
|
14 |
"""
|
15 |
-
ancestors = []
|
16 |
-
current = code
|
17 |
-
while current:
|
18 |
-
parent = tree[current]["parent"]
|
19 |
-
if parent:
|
20 |
-
ancestors.append(parent)
|
21 |
-
current = parent
|
22 |
-
return ancestors
|
23 |
-
|
24 |
-
|
25 |
-
def find_ancestors(node, hierarchy):
|
26 |
ancestors = set()
|
27 |
nodes_to_visit = [node]
|
28 |
while nodes_to_visit:
|
@@ -34,7 +25,17 @@ def find_ancestors(node, hierarchy):
|
|
34 |
return ancestors
|
35 |
|
36 |
|
37 |
-
def extend_with_ancestors(classes, hierarchy):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
extended_classes = set(classes)
|
39 |
for cls in classes:
|
40 |
ancestors = find_ancestors(cls, hierarchy)
|
@@ -43,11 +44,24 @@ def extend_with_ancestors(classes, hierarchy):
|
|
43 |
|
44 |
|
45 |
def calculate_hierarchical_precision_recall(
|
46 |
-
|
|
|
|
|
47 |
) -> Tuple[float, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Extend the sets of real and predicted codes with their ancestors
|
49 |
extended_real = set()
|
50 |
-
for code in
|
51 |
extended_real.add(code)
|
52 |
extended_real.update(hierarchy.get(code, set()))
|
53 |
|
@@ -66,37 +80,6 @@ def calculate_hierarchical_precision_recall(
|
|
66 |
return hP, hR
|
67 |
|
68 |
|
69 |
-
def calculate_hierarchical_measures(true_labels, predicted_labels, tree):
|
70 |
-
"""
|
71 |
-
Calculates hierarchical precision, recall, and F-measure in a hierarchical structure.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
- true_labels: A list of strings representing true class labels.
|
75 |
-
- predicted_labels: A list of strings representing predicted class labels.
|
76 |
-
- tree: A dictionary representing the hierarchical structure.
|
77 |
-
|
78 |
-
Returns:
|
79 |
-
- hP: A floating point number representing hierarchical precision.
|
80 |
-
- hR: A floating point number representing hierarchical recall.
|
81 |
-
- hF: A floating point number representing hierarchical F-measure.
|
82 |
-
"""
|
83 |
-
|
84 |
-
extended_true = [set(find_ancestors(tree, code) | {code}) for code in true_labels]
|
85 |
-
extended_pred = [
|
86 |
-
set(find_ancestors(tree, code) | {code}) for code in predicted_labels
|
87 |
-
]
|
88 |
-
|
89 |
-
true_positive = sum(len(t & p) for t, p in zip(extended_true, extended_pred))
|
90 |
-
predicted = sum(len(p) for p in extended_pred)
|
91 |
-
actual = sum(len(t) for t in extended_true)
|
92 |
-
|
93 |
-
hP = true_positive / predicted if predicted else 0
|
94 |
-
hR = true_positive / actual if actual else 0
|
95 |
-
hF = (2 * hP * hR) / (hP + hR) if (hP + hR) else 0
|
96 |
-
|
97 |
-
return hP, hR, hF
|
98 |
-
|
99 |
-
|
100 |
def hierarchical_f_measure(hP, hR, beta=1.0):
|
101 |
"""Calculate the hierarchical F-measure."""
|
102 |
if hP + hR == 0:
|
|
|
1 |
+
"""This module provides functions for calculating hierarchical precicion, recall and f1."""
|
2 |
+
|
3 |
from typing import List, Set, Dict, Tuple
|
4 |
|
5 |
|
6 |
+
def find_ancestors(node: str, hierarchy: dict) -> set:
|
7 |
"""
|
8 |
+
Find the ancestors of a given node in a hierarchy.
|
9 |
|
10 |
Args:
|
11 |
+
node (str): The node for which to find ancestors.
|
12 |
+
hierarchy (dict): A dictionary representing the hierarchy, where the keys are nodes and the values are their parents.
|
13 |
|
14 |
Returns:
|
15 |
+
set: A set of ancestors of the given node.
|
16 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
ancestors = set()
|
18 |
nodes_to_visit = [node]
|
19 |
while nodes_to_visit:
|
|
|
25 |
return ancestors
|
26 |
|
27 |
|
28 |
+
def extend_with_ancestors(classes: set, hierarchy: dict) -> set:
|
29 |
+
"""
|
30 |
+
Extend the given set of classes with their ancestors from the hierarchy.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
classes (set): The set of classes to extend.
|
34 |
+
hierarchy (dict): The hierarchy of classes.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
set: The extended set of classes including their ancestors.
|
38 |
+
"""
|
39 |
extended_classes = set(classes)
|
40 |
for cls in classes:
|
41 |
ancestors = find_ancestors(cls, hierarchy)
|
|
|
44 |
|
45 |
|
46 |
def calculate_hierarchical_precision_recall(
|
47 |
+
reference_codes: List[str],
|
48 |
+
predicted_codes: List[str],
|
49 |
+
hierarchy: Dict[str, Set[str]],
|
50 |
) -> Tuple[float, float]:
|
51 |
+
"""
|
52 |
+
Calculates the hierarchical precision and recall given the reference codes, predicted codes, and hierarchy definition.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
real_codes (List[str]): The list of reference codes.
|
56 |
+
predicted_codes (List[str]): The list of predicted codes.
|
57 |
+
hierarchy (Dict[str, Set[str]]): The hierarchy definition where keys are nodes and values are sets of parent nodes.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
Tuple[float, float]: A tuple containing the hierarchical precision and recall floating point values.
|
61 |
+
"""
|
62 |
# Extend the sets of real and predicted codes with their ancestors
|
63 |
extended_real = set()
|
64 |
+
for code in reference_codes:
|
65 |
extended_real.add(code)
|
66 |
extended_real.update(hierarchy.get(code, set()))
|
67 |
|
|
|
80 |
return hP, hR
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def hierarchical_f_measure(hP, hR, beta=1.0):
|
84 |
"""Calculate the hierarchical F-measure."""
|
85 |
if hP + hR == 0:
|