danieldux's picture
Add functions for finding ancestors and calculating hierarchical precision and recall
fcd15ea
raw
history blame
3.46 kB
from typing import List, Set, Dict, Tuple
def find_ancestors1(tree, code):
"""
Recursively finds ancestors of a given class (e.g., an ISCO-08 code) in a hierarchical JSON structure.
Args:
- tree: A dictionary representing the hierarchical structure.
- code: A string representing the label of the class.
Returns:
- A list of strings, each representing an ancestor of the input class.
"""
ancestors = []
current = code
while current:
parent = tree[current]["parent"]
if parent:
ancestors.append(parent)
current = parent
return ancestors
def find_ancestors(node, hierarchy):
ancestors = set()
nodes_to_visit = [node]
while nodes_to_visit:
current_node = nodes_to_visit.pop()
if current_node in hierarchy:
parents = hierarchy[current_node]
ancestors.update(parents)
nodes_to_visit.extend(parents)
return ancestors
def extend_with_ancestors(classes, hierarchy):
extended_classes = set(classes)
for cls in classes:
ancestors = find_ancestors(cls, hierarchy)
extended_classes.update(ancestors)
return extended_classes
def calculate_hierarchical_precision_recall(
real_codes: List[str], predicted_codes: List[str], hierarchy: Dict[str, Set[str]]
) -> Tuple[float, float]:
# Extend the sets of real and predicted codes with their ancestors
extended_real = set()
for code in real_codes:
extended_real.add(code)
extended_real.update(hierarchy.get(code, set()))
extended_predicted = set()
for code in predicted_codes:
extended_predicted.add(code)
extended_predicted.update(hierarchy.get(code, set()))
# Calculate the intersection
correct_predictions = extended_real.intersection(extended_predicted)
# Calculate hierarchical precision and recall
hP = len(correct_predictions) / len(extended_predicted) if extended_predicted else 0
hR = len(correct_predictions) / len(extended_real) if extended_real else 0
return hP, hR
def calculate_hierarchical_measures(true_labels, predicted_labels, tree):
"""
Calculates hierarchical precision, recall, and F-measure in a hierarchical structure.
Args:
- true_labels: A list of strings representing true class labels.
- predicted_labels: A list of strings representing predicted class labels.
- tree: A dictionary representing the hierarchical structure.
Returns:
- hP: A floating point number representing hierarchical precision.
- hR: A floating point number representing hierarchical recall.
- hF: A floating point number representing hierarchical F-measure.
"""
extended_true = [set(find_ancestors(tree, code) | {code}) for code in true_labels]
extended_pred = [
set(find_ancestors(tree, code) | {code}) for code in predicted_labels
]
true_positive = sum(len(t & p) for t, p in zip(extended_true, extended_pred))
predicted = sum(len(p) for p in extended_pred)
actual = sum(len(t) for t in extended_true)
hP = true_positive / predicted if predicted else 0
hR = true_positive / actual if actual else 0
hF = (2 * hP * hR) / (hP + hR) if (hP + hR) else 0
return hP, hR, hF
def hierarchical_f_measure(hP, hR, beta=1.0):
"""Calculate the hierarchical F-measure."""
if hP + hR == 0:
return 0
return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR)