|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ISCO-08 Hierarchical Accuracy Measure.""" |
|
|
|
import evaluate |
|
import datasets |
|
import ham |
|
import isco |
|
|
|
|
|
|
|
_CITATION = """ |
|
@article{scikit-learn, |
|
title={Scikit-learn: Machine Learning in {P}ython}, |
|
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. |
|
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. |
|
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and |
|
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, |
|
journal={Journal of Machine Learning Research}, |
|
volume={12}, |
|
pages={2825--2830}, |
|
year={2011} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The ISCO-08 Hierarchical Accuracy Measure is an implementation |
|
of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) |
|
(Kiritchenko, Svetlana and Famili, Fazel. 2005) with the ISCO-08 taxonomy by the International Labour Organization. |
|
|
|
1. The measure gives credit to partially correct classification, |
|
e.g. misclassification into node $I$ (ISCO unit group "1120") |
|
when the correct category is $G$ (ISCO unit group "1111") |
|
should be penalized less than misclassification into node $D$ |
|
(e.g., ISCO unit group "1211") since $I$ is in the same subgraph (ISCO sub-major group "11") |
|
as $G$ and $D$ is not. |
|
2. The measure punishes distant errors more heavily: |
|
1. the measure gives higher evaluation for correctly classifying one level down compared to staying at the parent node, e.g. classification into node $E$ (ISCO minor group "111") is better than classification into its parent $C$ (ISCO sub-major group "11") since $E$ is closer to the correct category $G$; |
|
2. the measure gives lower evaluation for incorrectly classifying one level down comparing to staying at the parent node, e.g. classification into node $F$ (ISCO minor group "112") is worse than classification into its parent $C$ since $F$ is farther away from $G$. |
|
|
|
The features described are accomplished by pairing hierarchical variants of precision ($hP$) and recall ($hR$) to form a hierarchical F1 (hF_β) score where each sample belongs not only to its class (e.g., a unit group level code), but also to all ancestors of the class in a hierarchical graph (i.e., the minor, sub-major, and major group level codes). |
|
|
|
Hierarchical precision can be computed with: |
|
$hP = \frac{| \v{C}_i ∩ \v{C}^′_i|} {|\v{C}^′_i |} = \frac{1}{2}$ |
|
|
|
Hierarchical recall can be computed with: |
|
$hR = \frac{| \v{C}_i ∩ \v{C}^′_i|} {|\v{C}_i |} = \frac{1}{2}$ |
|
|
|
Combining the two values $hP$ and $hR$ into one hF-measure: |
|
hF_β = \frac{(β^2 + 1) · hP · hR}{(β^2 · hP + hR)}, β ∈ [0, +∞) |
|
|
|
Note: |
|
**TP**: True positive |
|
**TN**: True negative |
|
**FP**: False positive |
|
**FN**: False negative |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates hierarchical precision, hierarchical recall and hierarchical F1 given a list of reference codes and predicted codes from the ISCO-08 taxonomy by the International Labour Organization. |
|
|
|
Args: |
|
- references (List[str]): List of ISCO-08 reference codes. Each reference code should be a single token, 4-digit ISCO-08 code string. |
|
- predictions (List[str]): List of machine predicted or human assigned ISCO-08 codes to score. Each prediction should be a single token, 4-digit ISCO-08 code string. |
|
|
|
Returns: |
|
- hierarchical_precision (`float` or `int`): Hierarchical precision score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
- hierarchical_recall: Hierarchical recall score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
- hierarchical_fmeasure: Hierarchical F1 score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
|
|
Examples: |
|
Example 1 |
|
|
|
>>> hierarchical_accuracy_metric = evaluate.load("ham") |
|
>>> results = ham.compute(reference=["1111", "1112", "1113", "1114"], predictions=["1111", "1113", "1120", "1211"]) |
|
>>> print(results) |
|
{ |
|
'accuracy': 0.25, |
|
'hierarchical_precision': 0.7142857142857143, |
|
'hierarchical_recall': 0.5, |
|
'hierarchical_fmeasure': 0.588235294117647 |
|
} |
|
""" |
|
|
|
|
|
ISCO_CSV_MIRROR_URL = ( |
|
"https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv" |
|
) |
|
ILO_ISCO_CSV_URL = ( |
|
"https://www.ilo.org/ilostat-files/ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN.csv" |
|
) |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ISCOHAM(evaluate.Metric): |
|
"""The ISCO-08 Hierarchical Accuracy Measure""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"predictions": datasets.Value("string"), |
|
"references": datasets.Value("string"), |
|
} |
|
), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"], |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Download external ISCO-08 csv file from the ILO website for creating the hierarchy dictionary.""" |
|
isco_csv = dl_manager.download_and_extract(ISCO_CSV_MIRROR_URL) |
|
print(f"ISCO CSV file downloaded") |
|
self.isco_hierarchy = isco.create_hierarchy_dict(isco_csv) |
|
print("ISCO hierarchy dictionary created") |
|
print(self.isco_hierarchy) |
|
|
|
def _compute(self, predictions, references): |
|
"""Returns the accuracy scores.""" |
|
|
|
predictions = [str(p) for p in predictions] |
|
references = [str(r) for r in references] |
|
|
|
|
|
accuracy = sum(i == j for i, j in zip(predictions, references)) / len( |
|
predictions |
|
) |
|
print(f"Accuracy: {accuracy}") |
|
|
|
|
|
hierarchy = self.isco_hierarchy |
|
hP, hR = ham.calculate_hierarchical_precision_recall( |
|
references, predictions, hierarchy |
|
) |
|
hF = ham.hierarchical_f_measure(hP, hR) |
|
print( |
|
f"Hierarchical Precision: {hP}, Hierarchical Recall: {hR}, Hierarchical F-measure: {hF}" |
|
) |
|
|
|
return { |
|
"accuracy": accuracy, |
|
"hierarchical_precision": hP, |
|
"hierarchical_recall": hR, |
|
"hierarchical_fmeasure": hF, |
|
} |
|
|