File size: 4,901 Bytes
d94c92e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f584d87
57da4b3
 
4197e21
d94c92e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4197e21
 
d94c92e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f584d87
 
5b469a4
 
f584d87
 
d94c92e
 
 
 
f584d87
d94c92e
 
 
 
 
57da4b3
 
4197e21
57da4b3
17ea6af
4c644ed
57da4b3
d94c92e
 
 
 
5b469a4
 
 
 
 
 
f584d87
 
 
 
3894697
57da4b3
3894697
 
57da4b3
17ea6af
 
4c644ed
17ea6af
3894697
 
f584d87
 
d94c92e
 
f584d87
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import ham
import os
import isco
import json


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
ISCO_CSV_URL = "https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv"
ISCO_JSON_URL = "https://storage.googleapis.com/isco-public/tables/isco_structure.json"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MetricTemplate1(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string"),
                    "references": datasets.Value("string"),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed

        # Download and prepare the ISCO structure csv file
        isco_csv = dl_manager.download_and_extract(ISCO_CSV_URL)
        print(f"ISCO CSV file downloaded")
        self.isco_hierarchy = isco.create_hierarchy_dict(isco_csv)
        print("ISCO hierarchy dictionary created")
        print(self.isco_hierarchy)

    def _compute(self, predictions, references):
        """Returns the scores"""
        # TODO: Compute the different scores of the module

        # Convert the inputs to strings
        predictions = [str(p) for p in predictions]
        references = [str(r) for r in references]

        # Calculate accuracy
        accuracy = sum(i == j for i, j in zip(predictions, references)) / len(
            predictions
        )

        # Example usage:
        # hierarchy = {"G": ["E"], "E": ["B"], "F": ["C"], "C": ["B"], "B": []}
        # true_labels = [{'G'}]
        # predicted_labels = [{'F'}]
        hierarchy = self.isco_hierarchy
        hP, hR = ham.calculate_hierarchical_precision_recall(
            references, predictions, hierarchy
        )
        hF = ham.hierarchical_f_measure(hP, hR)
        print(
            f"Hierarchical Precision: {hP}, Hierarchical Recall: {hR}, Hierarchical F-measure: {hF}"
        )

        return {
            "accuracy": accuracy,
            "hierarchical_precision": hP,
            "hierarchical_recall": hR,
            "hierarchical_fmeasure": hF,
        }