Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,57 +6,154 @@ import json
|
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
import gradio as gr
|
9 |
-
import
|
10 |
from FlagEmbedding import BGEM3FlagModel
|
|
|
|
|
11 |
|
12 |
# Define a function to load the ISCO taxonomy
|
13 |
def load_isco_taxonomy(file_path: str) -> list:
|
14 |
-
with open(file_path,
|
15 |
isco_data = [json.loads(line.strip()) for line in file]
|
16 |
return isco_data
|
17 |
|
|
|
18 |
# Define a function to create a FAISS index
|
19 |
-
def create_faiss_index(isco_taxonomy, model_name=
|
20 |
-
model = BGEM3FlagModel(
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
dimension = embeddings.shape[1]
|
25 |
index = faiss.IndexFlatL2(dimension)
|
26 |
index.add(embeddings)
|
27 |
-
faiss.write_index(index,
|
28 |
-
with open(
|
29 |
json.dump({i: entry for i, entry in enumerate(isco_taxonomy)}, f)
|
30 |
|
|
|
31 |
# Define a function to retrieve and rerank using FAISS
|
32 |
-
def retrieve_and_rerank_faiss(
|
33 |
# Check if isco_taxonomy.index exists, if not, create it with create_faiss_index
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
index = faiss.read_index("/data/isco_taxonomy.index")
|
38 |
with open("/data/isco_taxonomy_mapping.json", "r") as f:
|
39 |
isco_taxonomy = json.load(f)
|
40 |
-
model = BGEM3FlagModel(
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
query_embedding = np.array(query_embedding).astype("float32")
|
43 |
distances, indices = index.search(query_embedding, top_k)
|
|
|
44 |
results = [
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
for i, idx in enumerate(indices[0])
|
53 |
]
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
def gradio_interface(job_duties):
|
58 |
-
results = retrieve_and_rerank_faiss(job_duties)
|
59 |
-
return results
|
60 |
|
61 |
-
iface = gr.Interface(fn=gradio_interface, inputs="text", outputs=gr.outputs.Dataframe(type="pandas"), title="Semantic similarity matches with ESCO descriptions")
|
62 |
-
iface.launch()
|
|
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
import gradio as gr
|
9 |
+
import torch
|
10 |
from FlagEmbedding import BGEM3FlagModel
|
11 |
+
import os
|
12 |
+
|
13 |
|
14 |
# Define a function to load the ISCO taxonomy
|
15 |
def load_isco_taxonomy(file_path: str) -> list:
|
16 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
17 |
isco_data = [json.loads(line.strip()) for line in file]
|
18 |
return isco_data
|
19 |
|
20 |
+
|
21 |
# Define a function to create a FAISS index
|
22 |
+
def create_faiss_index(isco_taxonomy, model_name="BAAI/bge-m3"):
|
23 |
+
model = BGEM3FlagModel(
|
24 |
+
model_name, use_fp16=True, device="cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
)
|
26 |
+
texts = [str(entry["ESCO_DESCRIPTION"]) for entry in isco_taxonomy]
|
27 |
+
embeddings = model.encode(
|
28 |
+
texts,
|
29 |
+
batch_size=12,
|
30 |
+
max_length=128,
|
31 |
+
return_dense=True,
|
32 |
+
return_sparse=True,
|
33 |
+
return_colbert_vecs=True,
|
34 |
+
)["dense_vecs"]
|
35 |
+
embeddings = np.array(embeddings).astype("float32")
|
36 |
dimension = embeddings.shape[1]
|
37 |
index = faiss.IndexFlatL2(dimension)
|
38 |
index.add(embeddings)
|
39 |
+
faiss.write_index(index, "/data/isco_taxonomy.index")
|
40 |
+
with open("/data/isco_taxonomy_mapping.json", "w") as f:
|
41 |
json.dump({i: entry for i, entry in enumerate(isco_taxonomy)}, f)
|
42 |
|
43 |
+
|
44 |
# Define a function to retrieve and rerank using FAISS
|
45 |
+
def retrieve_and_rerank_faiss(job, model_name="BAAI/bge-m3", top_k=4):
|
46 |
# Check if isco_taxonomy.index exists, if not, create it with create_faiss_index
|
47 |
+
if not os.path.exists("/data/isco_taxonomy.index"):
|
48 |
+
isco_taxonomy = load_isco_taxonomy("isco_taxonomy.jsonl")
|
49 |
+
create_faiss_index(isco_taxonomy)
|
50 |
index = faiss.read_index("/data/isco_taxonomy.index")
|
51 |
with open("/data/isco_taxonomy_mapping.json", "r") as f:
|
52 |
isco_taxonomy = json.load(f)
|
53 |
+
model = BGEM3FlagModel(
|
54 |
+
model_name, use_fp16=True, device="cuda" if torch.cuda.is_available() else "cpu"
|
55 |
+
)
|
56 |
+
query_embedding = model.encode(
|
57 |
+
[job],
|
58 |
+
max_length=128,
|
59 |
+
return_dense=True,
|
60 |
+
return_sparse=True,
|
61 |
+
return_colbert_vecs=True,
|
62 |
+
)["dense_vecs"]
|
63 |
query_embedding = np.array(query_embedding).astype("float32")
|
64 |
distances, indices = index.search(query_embedding, top_k)
|
65 |
+
# top_documents = [isco_taxonomy[str(idx)] for idx in indices[0]]
|
66 |
results = [
|
67 |
+
[
|
68 |
+
float(distances[0][i]),
|
69 |
+
isco_taxonomy[str(idx)]["ISCO_CODE_4"],
|
70 |
+
isco_taxonomy[str(idx)]["ISCO_LABEL_4"],
|
71 |
+
isco_taxonomy[str(idx)]["ESCO_OCCUPATION"],
|
72 |
+
isco_taxonomy[str(idx)]["ESCO_DESCRIPTION"],
|
73 |
+
]
|
74 |
for i, idx in enumerate(indices[0])
|
75 |
]
|
76 |
+
ranked_results = sorted(results, key=lambda x: x[0], reverse=True)
|
77 |
+
return ranked_results
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
with gr.Row():
|
82 |
+
text1 = gr.Textbox(label="Job")
|
83 |
+
# text2 = gr.Textbox(label="Duties")
|
84 |
+
# drop1 = gr.Dropdown([4, 6, 8, 10], label="Number of results")
|
85 |
+
btn = gr.Button("Submit")
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column(scale=1, min_width=600):
|
88 |
+
|
89 |
+
@btn.click(
|
90 |
+
inputs=text1,
|
91 |
+
outputs=gr.DataFrame(
|
92 |
+
datatype="str",
|
93 |
+
label="Results",
|
94 |
+
headers=[
|
95 |
+
"Score",
|
96 |
+
"ISCO code",
|
97 |
+
"ISCO label",
|
98 |
+
"ESCO label",
|
99 |
+
"ESCO description",
|
100 |
+
],
|
101 |
+
),
|
102 |
+
)
|
103 |
+
def greet(job):
|
104 |
+
return retrieve_and_rerank_faiss(job)
|
105 |
+
|
106 |
+
with gr.Accordion(label="Explanation", open=False):
|
107 |
+
gr.Markdown(
|
108 |
+
"""
|
109 |
+
### Overview of the ESCO rank and retrieve application
|
110 |
+
The ESCO rank and retrieve application developed using Gradio and the BAAI/BGE-m3 model via a FAISS vector database represents a novel approach in the realm of information retrieval, particularly in the context of occupational classifications such as the ISCO-08 standard.
|
111 |
+
This application leverages machine learning to semantically process and rank occupation-related documents based on their relevance to user-input job descriptions.
|
112 |
+
|
113 |
+
### How the Application Works
|
114 |
+
|
115 |
+
The application is structured into several key components:
|
116 |
+
|
117 |
+
1. **Data preparation:** The ESCO taxonomy data, which includes descriptions of various occupations and corresponding ISCO codes, is initially loaded and processed. This involves reading from a JSON Lines file, ensuring that each entry is correctly formatted and accessible for subsequent operations.
|
118 |
+
|
119 |
+
2. **Embedding generation:** Using the BAAI/BGE-m3 model, which is optimized for multilingual information processing and retrieval tasks, embeddings (high-dimensional vector representations) are generated for each occupation description in the ESCO dataset. These embeddings capture the semantic essence of the text, allowing for meaningful comparisons between texts.
|
120 |
+
|
121 |
+
3. **Index creation and storage:** The generated embeddings are then stored in a Faiss index. [Faiss](https://faiss.ai/) (Facebook AI Similarity Search) is an efficient library for similarity search and clustering of dense vectors. It facilitates rapid retrieval of items whose embeddings are most similar to that of a query vector (e.g., cosine of the angle or euclidian distance between two vectors).
|
122 |
+
|
123 |
+
4. **Retrieval and Ranking:** When a user submits a job title or description of the job through the Gradio interface, the application:
|
124 |
+
|
125 |
+
- Generates an embedding for the input using the same BAAI/BGE-m3 model.
|
126 |
+
- Queries the pre-computed FAISS index to retrieve the closest occupation descriptions based on cosine similarity measures between embeddings.
|
127 |
+
- Ranks these descriptions according to their similarity scores and presents the results to the user.
|
128 |
+
|
129 |
+
### Advantages of the rank and retrieve method
|
130 |
+
|
131 |
+
#### Enhanced relevance through semantic processing
|
132 |
+
|
133 |
+
Unlike traditional keyword-based search methods, the rank and retrieve approach uses pre-trained deep learning models to understand the context and semantics of texts.
|
134 |
+
This ensures that the results are not just syntactically but also semantically aligned with the user’s query, thereby increasing the relevance and utility of the retrieved documents.
|
135 |
+
|
136 |
+
#### Efficiency and scalability
|
137 |
+
|
138 |
+
By pre-computing embeddings and storing them in a FAISS index, the application can quickly retrieve and rank documents without the need for on-the-fly computation.
|
139 |
+
This makes the system highly efficient and scalable, capable of handling large datasets and high query volumes with minimal latency.
|
140 |
+
|
141 |
+
#### Avoidance of training on sensitive data
|
142 |
+
|
143 |
+
One significant advantage of this approach over traditional text classification models is that it does not require training on sensitive or personally identifiable information (PII).
|
144 |
+
Since the model operates solely on public domain occupational descriptions from ESCO, there is no need to train a text classification model and hence no risk of exposing personal data.
|
145 |
+
An important factor given the regulations around data privacy (such as GDPR in Europe) and the ethical considerations of working with PII.
|
146 |
+
|
147 |
+
#### Adaptability and Multilingual Capability
|
148 |
+
|
149 |
+
The BAAI/BGE-m3 model's multilingual capabilities mean that the application can function effectively across different languages without the need for separate models or extensive retraining.
|
150 |
+
This adaptability makes it suitable for global deployment, particularly in diverse linguistic and cultural contexts.
|
151 |
+
|
152 |
+
### Conclusion
|
153 |
+
|
154 |
+
The rank and retrieve application showcases an advanced use of langauge models in information retrieval, offering a practical, efficient, and privacy-respecting solution for matching job titles (and/or descriptions) with occupational standards like ISCO-08.
|
155 |
+
"""
|
156 |
+
)
|
157 |
|
158 |
+
demo.launch()
|
|
|
|
|
|
|
159 |
|
|
|
|