Spaces:
Sleeping
Sleeping
danielcd99
commited on
Commit
·
1ba6bc3
1
Parent(s):
e8059ec
added symbolic model
Browse files- app.py +4 -2
- requirements.txt +2 -1
- wordnet.py +80 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
from preprocess_data import preprocess_text,get_stopwords
|
4 |
from datasets import load_dataset
|
5 |
from transformers import pipeline
|
|
|
6 |
|
7 |
dataset = load_dataset('danielcd99/imdb')
|
8 |
|
@@ -45,9 +46,10 @@ if st.button('Encontre exemplos!'):
|
|
45 |
else:
|
46 |
predictions.append('Positive')
|
47 |
|
48 |
-
df['
|
|
|
49 |
|
50 |
-
cols = ['review','sentiment', '
|
51 |
|
52 |
st.table(df[cols])
|
53 |
|
|
|
3 |
from preprocess_data import preprocess_text,get_stopwords
|
4 |
from datasets import load_dataset
|
5 |
from transformers import pipeline
|
6 |
+
from wordnet import wordnet_pipeline
|
7 |
|
8 |
dataset = load_dataset('danielcd99/imdb')
|
9 |
|
|
|
46 |
else:
|
47 |
predictions.append('Positive')
|
48 |
|
49 |
+
df['bert_results'] = predictions
|
50 |
+
df['wordnet_results'] = wordnet_pipeline(df, 'preprocessed_review')
|
51 |
|
52 |
+
cols = ['review','sentiment', 'bert_results', 'wordnet_results']
|
53 |
|
54 |
st.table(df[cols])
|
55 |
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
nltk
|
2 |
transformers==4.28.0
|
3 |
-
torch
|
|
|
|
1 |
nltk
|
2 |
transformers==4.28.0
|
3 |
+
torch
|
4 |
+
numpy
|
wordnet.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import nltk
|
3 |
+
from nltk.corpus import sentiwordnet as swn
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
|
6 |
+
flatten = lambda l: [item for sublist in l for item in sublist]
|
7 |
+
|
8 |
+
tagsswn = {
|
9 |
+
"NN": "n",
|
10 |
+
"VB": "v",
|
11 |
+
"JJ": "a",
|
12 |
+
"RB": "r",
|
13 |
+
}
|
14 |
+
|
15 |
+
def get_sentiment(aval, stopwords):
|
16 |
+
"""
|
17 |
+
Calcula o score de sentimento de um texto usando SentiWordNet.
|
18 |
+
|
19 |
+
Entrada:
|
20 |
+
aval (str): Texto a ser analisado.
|
21 |
+
|
22 |
+
Saída:
|
23 |
+
tuple: Score positivo e negativo do texto.
|
24 |
+
"""
|
25 |
+
pos_scores = []
|
26 |
+
neg_scores = []
|
27 |
+
sentences = nltk.sent_tokenize(aval)
|
28 |
+
sentence_words = [nltk.word_tokenize(sentence) for sentence in sentences]
|
29 |
+
tagged_sentence_words = flatten(nltk.pos_tag_sents(sentence_words))
|
30 |
+
|
31 |
+
tagged_sentence_words = [word for word in tagged_sentence_words if word[0].lower() not in stopwords]
|
32 |
+
|
33 |
+
for word, pos in tagged_sentence_words:
|
34 |
+
|
35 |
+
swn_pos = tagsswn.get(pos[:2], None)
|
36 |
+
if not swn_pos:
|
37 |
+
continue
|
38 |
+
|
39 |
+
synsets = list(swn.senti_synsets(word.lower(), swn_pos))
|
40 |
+
|
41 |
+
if not synsets:
|
42 |
+
continue
|
43 |
+
|
44 |
+
synset = synsets[0]
|
45 |
+
pos_scores.append(synset.pos_score())
|
46 |
+
neg_scores.append(synset.neg_score())
|
47 |
+
|
48 |
+
sump = np.sum(pos_scores) if pos_scores else 0
|
49 |
+
sumn = np.sum(neg_scores) if neg_scores else 0
|
50 |
+
|
51 |
+
return sump, sumn
|
52 |
+
|
53 |
+
def classify_sentiment(aval, stopwords):
|
54 |
+
"""
|
55 |
+
Classifica um texto como positivo ou negativo com base no score de sentimento.
|
56 |
+
|
57 |
+
Entrada:
|
58 |
+
aval (str): Texto a ser classificado.
|
59 |
+
|
60 |
+
Saída:
|
61 |
+
str: "positive" se o score positivo for maior, "negative" caso contrário.
|
62 |
+
"""
|
63 |
+
pos_score, neg_score = get_sentiment(aval, stopwords)
|
64 |
+
return "positive" if pos_score > neg_score else "negative"
|
65 |
+
|
66 |
+
|
67 |
+
def wordnet_pipeline(df, column):
|
68 |
+
nltk.download('sentiwordnet')
|
69 |
+
nltk.download('wordnet')
|
70 |
+
nltk.download('stopwords')
|
71 |
+
nltk.download('punkt')
|
72 |
+
nltk.download('averaged_perceptron_tagger')
|
73 |
+
|
74 |
+
stpwrds = set(stopwords.words("english"))
|
75 |
+
|
76 |
+
l = []
|
77 |
+
for review in df[column]:
|
78 |
+
l.append(classify_sentiment(review, stpwrds))
|
79 |
+
|
80 |
+
return l
|