File size: 105,487 Bytes
c1f801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lawNHLqffR_m"
      },
      "source": [
        "# SCC0633/SCC5908 - Processamento de Linguagem Natural\n",
        "> **Docente:** Thiago Alexandre Salgueiro Pardo \\\n",
        "> **Estagiário PAE:** Germano Antonio Zani Jorge\n",
        "\n",
        "\n",
        "# Integrantes do Grupo: GPTrouxas\n",
        "> André Guarnier De Mitri - 11395579 \\\n",
        "> Daniel Carvalho - 10685702 \\\n",
        "> Fernando - 11795342 \\\n",
        "> Lucas Henrique Sant'Anna - 10748521 \\\n",
        "> Magaly L Fujimoto - 4890582"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pV6WGoBln8id"
      },
      "source": [
        "# New Section"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# Abordagem Estatístico\n",
        "A arquitetura da solução estatística/neural envolve duas abordagens que\n",
        "serão descritas neste documento. A primeira abordagem envolve utilizar\n",
        "TF-IDF e Naive Bayes. E a segunda abordagem irá utilizar Word2Vec e um\n",
        "modelo transformers pré-treinado da família BERT, realizando finetuning do\n",
        "modelo.\n",
        "\n",
        "Na primeira abordagem, utilizaremos o TF-IDF, que leva em consideração a\n",
        "frequência de ocorrência dos termos em um corpus e gera uma sequência de\n",
        "vetores que serão fornecidos ao Naive Bayes para classificação da review como\n",
        "positiva ou negativa.\n",
        "\n",
        "\n",
        "Na segunda abordagem, utilizaremos o Word2Vec para vetorizar as reviews.\n",
        "Após dividir em treino e teste, faremos o fine tuning de um modelo do tipo BERT\n",
        "para o nosso problema e dataset específico. Com o BERT adaptado, faremos a\n",
        "classificação de nossos textos, medindo o seu desempenho com F1 score e\n",
        "acurácia.\n",
        "\n",
        "![alt text](../imagens/BERT_TDIDF.png)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vfP54aryxZBg"
      },
      "source": [
        "\n",
        "## # Etapas da Abordagem Estatística\n",
        "\n",
        "1. **Bibliotecas**: Importamos as bibliotecas necessárias, considerando pandas para manipulação de dados, train_test_split para dividir o conjunto de dados em conjuntos de treinamento e teste, TfidfVectorizer para vetorização de texto usando TF-IDF, MultinomialNB para implementar o classificador Naive Bayes Multinomial e algumas métricas de avaliação.\n",
        "\n",
        "2. **Conjunto de dados**: Carregar o conjunto de dados e armazená-lo em um dataframe usando pandas.\n",
        "\n",
        "3. **Dividir o conjunto de dados**: Usamos `train_test_split` para dividir o DataFrame em conjuntos de treinamento e teste.\n",
        "\n",
        "4. **TF-IDF**: Usamos `TfidfVectorizer` para converter as revisões de texto em vetores numéricos usando a técnica TF-IDF. Em seguida, ajustamos e transformamos tanto o conjunto de treinamento quanto o conjunto de teste.\n",
        "\n",
        "5. **Naive Bayes**: Treinamos um classificador Naive Bayes Multinomial e usamos o modelo treinado para prever os sentimentos no conjunto de teste usando `predict`.\n",
        "\n",
        "6. **Avaliação e Resultados**: Salvamos os resultados em um novo dataframe `results_df` contendo as revisões do conjunto de teste, os sentimentos originais e os sentimentos previstos pelo modelo. Além disso, avaliamos o modelo verificando algumas métricas e a matriz de confusão.\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TbLraa4UhWDJ"
      },
      "source": [
        "\n",
        "## # Baixando, Carregando os dados e Pré Processamento\n",
        "\n",
        "1. Transformar todos os textos em lowercase \\\\\n",
        "2. Remoção de caracteres especiais \\\\\n",
        "3. Remoção de stop words \\\\\n",
        "4. Lematização (Lemmatization) \\\\\n",
        "5. Tokenização \\\\"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 51,
      "metadata": {
        "id": "bIWmIe0qfTbE"
      },
      "outputs": [],
      "source": [
        "import pandas as pd"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 52,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "Wf0n2yPdAn4C",
        "outputId": "37eb3c4d-40c1-41a0-9b1a-d93ed6e272f3"
      },
      "outputs": [
        {
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "summary": "{\n  \"name\": \"db\",\n  \"rows\": 50000,\n  \"fields\": [\n    {\n      \"column\": \"review\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 49582,\n        \"samples\": [\n          \"\\\"Soul Plane\\\" is a horrible attempt at comedy that only should appeal people with thick skulls, bloodshot eyes and furry pawns. <br /><br />The plot is not only incoherent but also non-existent, acting is mostly sub sub-par with a gang of highly moronic and dreadful characters thrown in for bad measure, jokes are often spotted miles ahead and almost never even a bit amusing. This movie lacks any structure and is full of racial stereotypes that must have seemed old even in the fifties, the only thing it really has going for it is some pretty ladies, but really, if you want that you can rent something from the \\\"Adult\\\" section. OK?<br /><br />I can hardly see anything here to recommend since you'll probably have a lot a better and productive time chasing rats with a sledgehammer or inventing waterproof teabags or whatever.<br /><br />2/10\",\n          \"Guest from the Future tells a fascinating story of time travel, friendship, battle of good and evil -- all with a small budget, child actors, and few special effects. Something for Spielberg and Lucas to learn from. ;) A sixth-grader Kolya \\\"Nick\\\" Gerasimov finds a time machine in the basement of a decrepit building and travels 100 years into the future. He discovers a near-perfect, utopian society where robots play guitars and write poetry, everyone is kind to each other and people enjoy everything technology has to offer. Alice is the daughter of a prominent scientist who invented a device called Mielophone that allows to read minds of humans and animals. The device can be put to both good and bad use, depending on whose hands it falls into. When two evil space pirates from Saturn who want to rule the universe attempt to steal Mielophone, it falls into the hands of 20th century school boy Nick. With the pirates hot on his tracks, he travels back to his time, followed by the pirates, and Alice. Chaos, confusion and funny situations follow as the luckless pirates try to blend in with the earthlings. Alice enrolls in the same school Nick goes to and demonstrates superhuman abilities in PE class. The catch is, Alice doesn't know what Nick looks like, while the pirates do. Also, the pirates are able to change their appearance and turn literally into anyone. (Hmm, I wonder if this is where James Cameron got the idea for Terminator...) Who gets to Nick -- and Mielophone -- first? Excellent plot, non-stop adventures, and great soundtrack. I wish Hollywood made kid movies like this one...\",\n          \"\\\"National Treasure\\\" (2004) is a thoroughly misguided hodge-podge of plot entanglements that borrow from nearly every cloak and dagger government conspiracy clich\\u00e9 that has ever been written. The film stars Nicholas Cage as Benjamin Franklin Gates (how precious is that, I ask you?); a seemingly normal fellow who, for no other reason than being of a lineage of like-minded misguided fortune hunters, decides to steal a 'national treasure' that has been hidden by the United States founding fathers. After a bit of subtext and background that plays laughably (unintentionally) like Indiana Jones meets The Patriot, the film degenerates into one misguided whimsy after another \\u0096 attempting to create a 'Stanley Goodspeed' regurgitation of Nicholas Cage and launch the whole convoluted mess forward with a series of high octane, but disconnected misadventures.<br /><br />The relevancy and logic to having George Washington and his motley crew of patriots burying a king's ransom someplace on native soil, and then, going through the meticulous plan of leaving clues scattered throughout U.S. currency art work, is something that director Jon Turteltaub never quite gets around to explaining. Couldn't Washington found better usage for such wealth during the start up of the country? Hence, we are left with a mystery built on top of an enigma that is already on shaky ground by the time Ben appoints himself the new custodian of this untold wealth. Ben's intentions are noble \\u0096 if confusing. He's set on protecting the treasure. For who and when?\\u0085your guess is as good as mine.<br /><br />But there are a few problems with Ben's crusade. First up, his friend, Ian Holmes (Sean Bean) decides that he can't wait for Ben to make up his mind about stealing the Declaration of Independence from the National Archives (oh, yeah \\u0096 brilliant idea!). Presumably, the back of that famous document holds the secret answer to the ultimate fortune. So Ian tries to kill Ben. The assassination attempt is, of course, unsuccessful, if overly melodramatic. It also affords Ben the opportunity to pick up, and pick on, the very sultry curator of the archives, Abigail Chase (Diane Kruger). She thinks Ben is clearly a nut \\u0096 at least at the beginning. But true to action/romance form, Abby's resolve melts quicker than you can say, \\\"is that the Hope Diamond?\\\" The film moves into full X-File-ish mode, as the FBI, mistakenly believing that Ben is behind the theft, retaliate in various benign ways that lead to a multi-layering of action sequences reminiscent of Mission Impossible meets The Fugitive. Honestly, don't those guys ever get 'intelligence' information that is correct? In the final analysis, \\\"National Treasure\\\" isn't great film making, so much as it's a patchwork rehash of tired old bits from other movies, woven together from scraps, the likes of which would make IL' Betsy Ross blush.<br /><br />The Buena Vista DVD delivers a far more generous treatment than this film is deserving of. The anamorphic widescreen picture exhibits a very smooth and finely detailed image with very rich colors, natural flesh tones, solid blacks and clean whites. The stylized image is also free of blemishes and digital enhancements. The audio is 5.1 and delivers a nice sonic boom to your side and rear speakers with intensity and realism. Extras include a host of promotional junket material that is rather deep and over the top in its explanation of how and why this film was made. If only, as an audience, we had had more clarification as to why Ben and co. were chasing after an illusive treasure, this might have been one good flick. Extras conclude with the theatrical trailer, audio commentary and deleted scenes. Not for the faint-hearted \\u0096 just the thick-headed.\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"sentiment\",\n      \"properties\": {\n        \"dtype\": \"category\",\n        \"num_unique_values\": 2,\n        \"samples\": [\n          \"negative\",\n          \"positive\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}",
              "type": "dataframe",
              "variable_name": "db"
            },
            "text/html": [
              "\n",
              "  <div id=\"df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>One of the other reviewers has mentioned that ...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>A wonderful little production. &lt;br /&gt;&lt;br /&gt;The...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>I thought this was a wonderful way to spend ti...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Basically there's a family where a little boy ...</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Petter Mattei's \"Love in the Time of Money\" is...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-711a5547-60a9-42cc-80f0-6083c4c007ee\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-711a5547-60a9-42cc-80f0-6083c4c007ee')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-711a5547-60a9-42cc-80f0-6083c4c007ee button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "text/plain": [
              "                                              review sentiment\n",
              "0  One of the other reviewers has mentioned that ...  positive\n",
              "1  A wonderful little production. <br /><br />The...  positive\n",
              "2  I thought this was a wonderful way to spend ti...  positive\n",
              "3  Basically there's a family where a little boy ...  negative\n",
              "4  Petter Mattei's \"Love in the Time of Money\" is...  positive"
            ]
          },
          "execution_count": 52,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "db = pd.read_csv('imdb_reviews.csv')\n",
        "db.head(5)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 53,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "6PlfPScGMF1_",
        "outputId": "2a0bd4a1-e22a-429d-82a4-5984eeab7b9d"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "sentiment\n",
              "positive    25000\n",
              "negative    25000\n",
              "Name: count, dtype: int64"
            ]
          },
          "execution_count": 53,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "db['sentiment'].value_counts()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 54,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Kev0EaSmMa4N",
        "outputId": "eab73a61-ba36-4d72-e4f2-82236f9f2880"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Quantidade de valores faltantes para cada variável do dataset:\n",
            "review       0\n",
            "sentiment    0\n",
            "dtype: int64\n"
          ]
        }
      ],
      "source": [
        "valores_ausentes = db.isnull().sum(axis=0)\n",
        "print('Quantidade de valores faltantes para cada variável do dataset:')\n",
        "print(valores_ausentes)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 55,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 276
        },
        "id": "1AI3rN0KMuUq",
        "outputId": "7ea5c91b-362e-49eb-82a7-6e8535f0e591"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n",
            "[nltk_data] Downloading package wordnet to /root/nltk_data...\n",
            "[nltk_data]   Package wordnet is already up-to-date!\n"
          ]
        },
        {
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "summary": "{\n  \"name\": \"db\",\n  \"rows\": 50000,\n  \"fields\": [\n    {\n      \"column\": \"review\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 49574,\n        \"samples\": [\n          \"moving intriguing absorbing however story little choppy hard follow time although two principal actor great job seeing senn penn acting every fiber stealing every frame made memorable movie later movie revealed one role actor also showed comedic flair sweet lowdown surprisingly talented light weight used think \",\n          \"gem go direct video fabulous art direction mood never miss beat truman show meet metropolis excellent cast never seen laura dern better bill macy always fabulous said david paymer meat loaf incredible film \",\n          \"watched movie dismayed say least movie failed communicate audience language would put shame street loafer plot father forcing none son marry seems far fetched idea grandmother asking grand kid mess enemy would draw feeble minded attention waiting whole movie laugh laugh stupidity waste 3 hour convince movie even worth first look hope save time \"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"sentiment\",\n      \"properties\": {\n        \"dtype\": \"category\",\n        \"num_unique_values\": 2,\n        \"samples\": [\n          \"negative\",\n          \"positive\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}",
              "type": "dataframe",
              "variable_name": "db"
            },
            "text/html": [
              "\n",
              "  <div id=\"df-5fddbeb1-c284-468b-b861-38e8e649d721\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>one reviewer mentioned watching 1 oz episode h...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>wonderful little production filming technique ...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>thought wonderful way spend time hot summer we...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>basically family little boy jake think zombie ...</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>petter mattei love time money visually stunnin...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5fddbeb1-c284-468b-b861-38e8e649d721')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-5fddbeb1-c284-468b-b861-38e8e649d721 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-5fddbeb1-c284-468b-b861-38e8e649d721');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-430854d7-7cfd-4ac6-9592-bec216bf2654\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-430854d7-7cfd-4ac6-9592-bec216bf2654')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-430854d7-7cfd-4ac6-9592-bec216bf2654 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "text/plain": [
              "                                              review sentiment\n",
              "0  one reviewer mentioned watching 1 oz episode h...  positive\n",
              "1  wonderful little production filming technique ...  positive\n",
              "2  thought wonderful way spend time hot summer we...  positive\n",
              "3  basically family little boy jake think zombie ...  negative\n",
              "4  petter mattei love time money visually stunnin...  positive"
            ]
          },
          "execution_count": 55,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "import re\n",
        "import nltk\n",
        "from nltk.corpus import stopwords\n",
        "from nltk.stem import PorterStemmer\n",
        "from nltk.stem import WordNetLemmatizer\n",
        "\n",
        "def lowercase_text(text):\n",
        "    return text.lower()\n",
        "\n",
        "def remove_html(text):\n",
        "    return re.sub(r'<[^<]+?>', '', text)\n",
        "\n",
        "def remove_url(text):\n",
        "    return re.sub(r'http[s]?://\\S+|www\\.\\S+', '', text)\n",
        "\n",
        "def remove_punctuations(text):\n",
        "    tokens_list = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\]^_`{|}~'\n",
        "    for char in text:\n",
        "        if char in tokens_list:\n",
        "            text = text.replace(char, ' ')\n",
        "\n",
        "    return text\n",
        "\n",
        "def remove_emojis(text):\n",
        "    emojis = re.compile(\"[\"\n",
        "                        u\"\\U0001F600-\\U0001F64F\"\n",
        "                        u\"\\U0001F300-\\U0001F5FF\"\n",
        "                        u\"\\U0001F680-\\U0001F6FF\"\n",
        "                        u\"\\U0001F1E0-\\U0001F1FF\"\n",
        "                        u\"\\U00002500-\\U00002BEF\"\n",
        "                        u\"\\U00002702-\\U000027B0\"\n",
        "                        u\"\\U00002702-\\U000027B0\"\n",
        "                        u\"\\U000024C2-\\U0001F251\"\n",
        "                        u\"\\U0001f926-\\U0001f937\"\n",
        "                        u\"\\U00010000-\\U0010ffff\"\n",
        "                        u\"\\u2640-\\u2642\"\n",
        "                        u\"\\u2600-\\u2B55\"\n",
        "                        u\"\\u200d\"\n",
        "                        u\"\\u23cf\"\n",
        "                        u\"\\u23e9\"\n",
        "                        u\"\\u231a\"\n",
        "                        u\"\\ufe0f\"\n",
        "                        u\"\\u3030\"\n",
        "                        \"]+\", re.UNICODE)\n",
        "\n",
        "    text = re.sub(emojis, '', text)\n",
        "    return text\n",
        "\n",
        "def remove_stop_words(text):\n",
        "    stop_words = stopwords.words('english')\n",
        "    new_text = ''\n",
        "    for word in text.split():\n",
        "        if word not in stop_words:\n",
        "            new_text += ''.join(f'{word} ')\n",
        "\n",
        "    return new_text.strip()\n",
        "\n",
        "def lem_words(text):\n",
        "    lemma = WordNetLemmatizer()\n",
        "    new_text = ''\n",
        "    for word in text.split():\n",
        "        new_text += ''.join(f'{lemma.lemmatize(word)} ')\n",
        "\n",
        "    return new_text\n",
        "\n",
        "def preprocess_text(text):\n",
        "    text = lowercase_text(text)\n",
        "    text = remove_html(text)\n",
        "    text = remove_url(text)\n",
        "    text = remove_punctuations(text)\n",
        "    text = remove_emojis(text)\n",
        "    text = remove_stop_words(text)\n",
        "    text = lem_words(text)\n",
        "\n",
        "    return text\n",
        "\n",
        "nltk.download('stopwords')\n",
        "nltk.download('wordnet')\n",
        "db['review'] = db['review'].apply(preprocess_text)\n",
        "db.head()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QgufZpgHnPa4"
      },
      "source": [
        "# **Conjunto de Treino e teste**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 56,
      "metadata": {
        "id": "s0lJ6Q0tnPka"
      },
      "outputs": [],
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "X= db['review']\n",
        "y= db['sentiment']\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 12)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 57,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "nz4erCEJuD4-",
        "outputId": "88d57536-66e7-4d9b-e016-bf40183d4c45"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "35235    disagree people saying lousy horror film good ...\n",
              "36936    husband wife doctor team carole nile nelson mo...\n",
              "46486    like cast pretty much however story sort unfol...\n",
              "27160    movie awful bad bear expend anything word avoi...\n",
              "19490    purchased blood castle dvd ebay buck knowing s...\n",
              "                               ...                        \n",
              "36482    strange thing see film scene work rather weakl...\n",
              "40177    saw cheap dvd release title entity force since...\n",
              "19709    one peculiar oft used romance movie plot one s...\n",
              "38555    nothing positive say meandering nonsense huffi...\n",
              "14155    low moment life bewildered depressed sitting r...\n",
              "Name: review, Length: 40000, dtype: object"
            ]
          },
          "execution_count": 57,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "X_train"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6LX-6e-QlioJ"
      },
      "source": [
        "# **TD-IDF e Naive Bayes**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 58,
      "metadata": {
        "id": "gscB9-obNusA"
      },
      "outputs": [],
      "source": [
        "from sklearn.metrics import confusion_matrix,classification_report\n",
        "from sklearn.feature_extraction.text import TfidfVectorizer\n",
        "from sklearn.preprocessing import StandardScaler as encoder\n",
        "from sklearn.metrics import (\n",
        "    accuracy_score,\n",
        "    confusion_matrix,\n",
        "    ConfusionMatrixDisplay,\n",
        "    f1_score,\n",
        ")\n",
        "\n",
        "\n",
        "tfidf = TfidfVectorizer()\n",
        "tfidf_train = tfidf.fit_transform(X_train)\n",
        "tfidf_test = tfidf.transform(X_test)\n",
        "\n",
        "from sklearn.naive_bayes import MultinomialNB\n",
        "\n",
        "naive_bayes = MultinomialNB()\n",
        "\n",
        "naive_bayes.fit(tfidf_train, y_train)\n",
        "y_pred = naive_bayes.predict(tfidf_test)\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 59,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "RfJ7AHMZvAb8",
        "outputId": "685701e1-b1e8-47fb-9dc5-1bc04dd3894b"
      },
      "outputs": [
        {
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "summary": "{\n  \"name\": \"results_df\",\n  \"rows\": 10000,\n  \"fields\": [\n    {\n      \"column\": \"review\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 9990,\n        \"samples\": [\n          \"saw lot film charles dickens christmas carol one best atmosphere exactly book actor george c scott others great unfortunately often watch film germany switzerland \",\n          \"loved first season quality went little bit second season however great middle pegasus third season fairly novel original ok fourth season started going downhill fast never even began giving u explanation really starting need hell cylon plan two cylon faction point angel kara leading fleet devastated earth 1 kind past last five cylons survive reincarnation question everywhere answer nowhere come end earth 2 earth past well okay destroying fleet giving technology giving kind urban life spreading thousand people paper thinly across planet anti science anti reason anti life philosophy show seems humanity forever trapped cycle going nature romanticism decadent capitalist society inventing destructive ruin everything without vision without hope grander future humanity antithetical proper science fiction even get started angel religious claptrap worst kind ultimate disappointment whole happened happen thing related previous incarnation series earth know making new show somehow consistent old would definitive stroke genius frakkin shame 1 10 \",\n          \"guest future tell fascinating story time travel friendship battle good evil small budget child actor special effect something spielberg lucas learn sixth grader kolya nick gerasimov find time machine basement decrepit building travel 100 year future discovers near perfect utopian society robot play guitar write poetry everyone kind people enjoy everything technology offer alice daughter prominent scientist invented device called mielophone allows read mind human animal device put good bad use depending whose hand fall two evil space pirate saturn want rule universe attempt steal mielophone fall hand 20th century school boy nick pirate hot track travel back time followed pirate alice chaos confusion funny situation follow luckless pirate try blend earthling alice enrolls school nick go demonstrates superhuman ability pe class catch alice know nick look like pirate also pirate able change appearance turn literally anyone hmm wonder james cameron got idea terminator get nick mielophone first excellent plot non stop adventure great soundtrack wish hollywood made kid movie like one \"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"original sentiment\",\n      \"properties\": {\n        \"dtype\": \"category\",\n        \"num_unique_values\": 2,\n        \"samples\": [\n          \"positive\",\n          \"negative\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"predicted sentiment\",\n      \"properties\": {\n        \"dtype\": \"category\",\n        \"num_unique_values\": 2,\n        \"samples\": [\n          \"positive\",\n          \"negative\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}",
              "type": "dataframe",
              "variable_name": "results_df"
            },
            "text/html": [
              "\n",
              "  <div id=\"df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>original sentiment</th>\n",
              "      <th>predicted sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>34622</th>\n",
              "      <td>hard tell noonan marshall trying ape abbott co...</td>\n",
              "      <td>negative</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1163</th>\n",
              "      <td>well start one reviewer said know real treat s...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7637</th>\n",
              "      <td>wife kid opinion absolute abc classic seen eve...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7045</th>\n",
              "      <td>surprise basic copycat comedy classic nutty pr...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>43847</th>\n",
              "      <td>josef von sternberg directs magnificent silent...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-399174c9-298e-4ffd-acce-3dabb38c956b\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-399174c9-298e-4ffd-acce-3dabb38c956b')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-399174c9-298e-4ffd-acce-3dabb38c956b button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "text/plain": [
              "                                                  review original sentiment  \\\n",
              "34622  hard tell noonan marshall trying ape abbott co...           negative   \n",
              "1163   well start one reviewer said know real treat s...           positive   \n",
              "7637   wife kid opinion absolute abc classic seen eve...           positive   \n",
              "7045   surprise basic copycat comedy classic nutty pr...           positive   \n",
              "43847  josef von sternberg directs magnificent silent...           positive   \n",
              "\n",
              "      predicted sentiment  \n",
              "34622            negative  \n",
              "1163             positive  \n",
              "7637             positive  \n",
              "7045             positive  \n",
              "43847            positive  "
            ]
          },
          "execution_count": 59,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# Criando DataFrame com resultados\n",
        "results_df = pd.DataFrame({'review': X_test, 'original sentiment': y_test, 'predicted sentiment': y_pred})\n",
        "results_df.head()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8Xq2ABXYtsjk"
      },
      "source": [
        "## Avaliação"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 60,
      "metadata": {
        "id": "3lXqDNhSrhsZ"
      },
      "outputs": [],
      "source": [
        "from sklearn.metrics import confusion_matrix, classification_report\n",
        "import seaborn as sns\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "def plot_confusion_matrix(y_true, y_pred, labels, model_name):\n",
        "    cm = confusion_matrix(y_true, y_pred, labels=labels)\n",
        "    plt.figure(figsize=(8, 6))\n",
        "    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
        "    plt.xlabel('Predicted Labels')\n",
        "    plt.ylabel('True Labels')\n",
        "    plt.title(f'Confusion Matrix {model_name}')\n",
        "    plt.show()\n",
        "\n",
        "# Função para calcular e imprimir as métricas de avaliação\n",
        "def print_evaluation_metrics(y_true, y_pred, model_name):\n",
        "    print(f\"Classification Report {model_name}:\")\n",
        "    print(classification_report(y_true, y_pred))\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 61,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 564
        },
        "id": "ybfb_GKDuqmb",
        "outputId": "3e4c3a98-8962-4ce8-9856-2252f769a1b8"
      },
      "outputs": [
        {
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAIjCAYAAACwHvu2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3deVxV1f7/8fdB5YAgkwpozkMmqTmVoeWQA06lZbecEuerF0dyyNIcyujadSpLy0rNtDJLK62UVDQTh1Qci9RQLAWcEFFEhf37w5/n2xFN2Hk8R3g9fezH5ay99t6ffR4X/fRZa69tMQzDEAAAAJBHbs4OAAAAAHcnEkkAAACYQiIJAAAAU0gkAQAAYAqJJAAAAEwhkQQAAIApJJIAAAAwhUQSAAAAppBIAgAAwBQSSaCAOHDggFq1aiVfX19ZLBYtX778tp7/8OHDslgsmj9//m09792sadOmatq0qbPDAACHIZEE7qBDhw7p3//+typVqiQPDw/5+PioUaNGmjlzpjIyMhx67fDwcO3Zs0eTJ0/WwoULVb9+fYde707q2bOnLBaLfHx8bvg9HjhwQBaLRRaLRf/73//yfP5jx45pwoQJiouLuw3RmnftHqZOnZpj3/z582WxWPTzzz/b2iZMmGA7xmKxyM3NTaVKlVL79u21efPmOxk6gHyqsLMDAAqKlStX6l//+pesVqt69OihGjVq6NKlS9q4caNGjhypffv26b333nPItTMyMhQbG6uXXnpJgwYNcsg1ypcvr4yMDBUpUsQh57+VwoUL68KFC/rmm2/0zDPP2O1btGiRPDw8dPHiRVPnPnbsmCZOnKgKFSqodu3auT5u9erVpq53K2+88YYGDhyookWL5qr/7Nmz5e3trezsbB09elRz585V48aNtXXr1jzdDwBcj0QSuAMSEhLUuXNnlS9fXmvXrlWpUqVs+yIiInTw4EGtXLnSYdc/ceKEJMnPz89h17BYLPLw8HDY+W/FarWqUaNG+uSTT3IkkosXL1a7du30xRdf3JFYLly4oKJFi8rd3f22n7t27dqKi4vTnDlzFBkZmatjnn76aZUoUcL2uWPHjqpRo4Y+//xzEkkA/whD28AdMGXKFKWnp+uDDz6wSyKvqVKlioYOHWr7fOXKFb3yyiuqXLmyrFarKlSooBdffFGZmZl2x1WoUEHt27fXxo0b9dBDD8nDw0OVKlXSRx99ZOszYcIElS9fXpI0cuRIWSwWVahQQdLVIeFrP//VtSHRv4qOjtYjjzwiPz8/eXt7q1q1anrxxRdt+282R3Lt2rV69NFH5eXlJT8/P3Xo0EG//PLLDa938OBB9ezZU35+fvL19VWvXr104cKFm3+x1+natau+++47paam2tq2bdumAwcOqGvXrjn6nz59WiNGjFDNmjXl7e0tHx8ftWnTRrt27bL1iYmJ0YMPPihJ6tWrl22Y+Np9Nm3aVDVq1ND27dvVuHFjFS1a1Pa9XD9HMjw8XB4eHjnuPywsTP7+/jp27Ngt77FRo0Z67LHHNGXKFNPTIYKDgyVdreICwD9BIgncAd98840qVaqkhg0b5qp/37599fLLL6tu3bqaPn26mjRpoqioKHXu3DlH34MHD+rpp59Wy5YtNXXqVPn7+6tnz57at2+fJOmpp57S9OnTJUldunTRwoULNWPGjDzFv2/fPrVv316ZmZmaNGmSpk6dqieeeEI//fTT3x73ww8/KCwsTCkpKZowYYIiIyO1adMmNWrUSIcPH87R/5lnntG5c+cUFRWlZ555RvPnz9fEiRNzHedTTz0li8WiL7/80ta2ePFi3Xfffapbt26O/r///ruWL1+u9u3ba9q0aRo5cqT27NmjJk2a2JK66tWra9KkSZKk/v37a+HChVq4cKEaN25sO8+pU6fUpk0b1a5dWzNmzFCzZs1uGN/MmTNVsmRJhYeHKysrS5L07rvvavXq1XrrrbdUunTpXN3nhAkTlJycrNmzZ+eq/+nTp3Xy5EmlpKRo586d6tevnzw8PHJUbgEgzwwADnX27FlDktGhQ4dc9Y+LizMkGX379rVrHzFihCHJWLt2ra2tfPnyhiRjw4YNtraUlBTDarUazz//vK0tISHBkGS88cYbducMDw83ypcvnyOG8ePHG3/962H69OmGJOPEiRM3jfvaNebNm2drq127thEYGGicOnXK1rZr1y7Dzc3N6NGjR47r9e7d2+6cTz75pFG8ePGbXvOv9+Hl5WUYhmE8/fTTRvPmzQ3DMIysrCwjODjYmDhx4g2/g4sXLxpZWVk57sNqtRqTJk2ytW3bti3HvV3TpEkTQ5IxZ86cG+5r0qSJXduqVasMScarr75q/P7774a3t7fRsWPHW96jYRiGJCMiIsIwDMNo1qyZERwcbFy4cMEwDMOYN2+eIcnYtm2brf+17/X6zc/Pz/j+++9zdU0A+DtUJAEHS0tLkyQVK1YsV/2//fZbScox/+3555+XpBxzKUNCQvToo4/aPpcsWVLVqlXT77//bjrm612bW/nVV18pOzs7V8ccP35ccXFx6tmzpwICAmzttWrVUsuWLW33+VcDBgyw+/zoo4/q1KlTtu8wN7p27aqYmBglJSVp7dq1SkpKuuGwtnR1XqWb29W/BrOysnTq1CnbsP2OHTtyfU2r1apevXrlqm+rVq3073//W5MmTdJTTz0lDw8Pvfvuu7m+1jUTJkxQUlKS5syZc8u+X3zxhaKjo7V69WrNmzdP9957rzp16qRNmzbl+boA8FckkoCD+fj4SJLOnTuXq/5HjhyRm5ubqlSpYtceHBwsPz8/HTlyxK69XLlyOc7h7++vM2fOmIw4p2effVaNGjVS3759FRQUpM6dO2vJkiV/m1Rei7NatWo59lWvXl0nT57U+fPn7dqvvxd/f39JytO9tG3bVsWKFdNnn32mRYsW6cEHH8zxXV6TnZ2t6dOnq2rVqrJarSpRooRKliyp3bt36+zZs7m+5j333JOnB2v+97//KSAgQHFxcXrzzTcVGBiY62Ovady4sZo1a5aruZKNGzdWixYt1LJlS/Xs2VNr1qxRsWLFNHjw4DxfFwD+ikQScDAfHx+VLl1ae/fuzdNx1z/scjOFChW6YbthGKavcW3+3jWenp7asGGDfvjhBz333HPavXu3nn32WbVs2TJH33/in9zLNVarVU899ZQWLFigZcuW3bQaKUmvvfaaIiMj1bhxY3388cdatWqVoqOjdf/99+e68ipd/X7yYufOnUpJSZEk7dmzJ0/H/tX48eOVlJSU54qmt7e3GjRooB07duRI5gEgL0gkgTugffv2OnTokGJjY2/Zt3z58srOztaBAwfs2pOTk5Wammp7Avt28Pf3t3vC+Zrrq56S5ObmpubNm2vatGnav3+/Jk+erLVr12rdunU3PPe1OOPj43Ps+/XXX1WiRAl5eXn9sxu4ia5du2rnzp06d+7cDR9Qumbp0qVq1qyZPvjgA3Xu3FmtWrVSixYtcnwnuU3qc+P8+fPq1auXQkJC1L9/f02ZMkXbtm0zda4mTZqoadOm+u9//5vnJ7ivXLkiSUpPTzd1bQCQSCSBO2LUqFHy8vJS3759lZycnGP/oUOHNHPmTElXh2Yl5Xiyetq0aZKkdu3a3ba4KleurLNnz2r37t22tuPHj2vZsmV2/U6fPp3j2GvrD16/JNE1pUqVUu3atbVgwQK7xGzv3r1avXq17T4doVmzZnrllVc0a9Ys21I3N1KoUKEc1c7PP/9cf/75p13btYT3Rkl3Xo0ePVqJiYlasGCBpk2bpgoVKig8PPym3+OtXJsrmZfF7E+fPq1NmzYpODjY1LA6AFzDImLAHVC5cmUtXrxYzz77rKpXr273ZptNmzbp888/V8+ePSVJDzzwgMLDw/Xee+8pNTVVTZo00datW7VgwQJ17NjxpkvLmNG5c2eNHj1aTz75pIYMGaILFy5o9uzZuvfee+0eNpk0aZI2bNigdu3aqXz58kpJSdE777yjMmXK6JFHHrnp+d944w21adNGoaGh6tOnjzIyMvTWW2/J19dXEyZMuG33cT03NzeNHTv2lv3at2+vSZMmqVevXmrYsKH27NmjRYsWqVKlSnb9KleuLD8/P82ZM0fFihWTl5eXGjRooIoVK+YprrVr1+qdd97R+PHjbcsRzZs3T02bNtW4ceM0ZcqUPJ1PulqVbNKkidavX3/TPkuXLpW3t7cMw9CxY8f0wQcf6MyZM5ozZ85trbYCKICc+9A4ULD89ttvRr9+/YwKFSoY7u7uRrFixYxGjRoZb731lnHx4kVbv8uXLxsTJ040KlasaBQpUsQoW7asMWbMGLs+hnF1+Z927drluM71y87cbPkfwzCM1atXGzVq1DDc3d2NatWqGR9//HGO5X/WrFljdOjQwShdurTh7u5ulC5d2ujSpYvx22+/5bjG9Uvk/PDDD0ajRo0MT09Pw8fHx3j88ceN/fv32/W5dr3rlxe6tqRNQkLCTb9Tw7Bf/udmbrb8z/PPP2+UKlXK8PT0NBo1amTExsbecNmer776yggJCTEKFy5sd59NmjQx7r///hte86/nSUtLM8qXL2/UrVvXuHz5sl2/4cOHG25ubkZsbOzf3oP+svzPX61bt862tM+tlv/x8vIyQkNDjSVLlvzttQAgNyyGkYdZ7AAAAMD/xxxJAAAAmEIiCQAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKbkyzfbeDYY6ewQADjIyR/z/vYXAHcHL3fnvWnJs84gh507Y+csh53b2ahIAgAAwJR8WZEEAADIEwu1NTNIJAEAACzOG1a/m5F+AwAAwBQqkgAAAAxtm8K3BgAAAFOoSAIAADBH0hQqkgAAADCFiiQAAABzJE3hWwMAAIApVCQBAACYI2kKiSQAAABD26bwrQEAAMAUKpIAAAAMbZtCRRIAAACmUJEEAABgjqQpfGsAAAAwhYokAAAAcyRNoSIJAAAAU6hIAgAAMEfSFBJJAAAAhrZNIf0GAACAKVQkAQAAGNo2hW8NAAAAplCRBAAAoCJpCt8aAAAATKEiCQAA4MZT22ZQkQQAAIApVCQBAACYI2kKiSQAAAALkptC+g0AAABTqEgCAAAwtG0K3xoAAABMoSIJAADAHElTqEgCAADAFCqSAAAAzJE0hW8NAAAAplCRBAAAYI6kKSSSAAAADG2bwrcGAAAAU0gkAQAALBbHbf/A66+/LovFomHDhtnaLl68qIiICBUvXlze3t7q1KmTkpOT7Y5LTExUu3btVLRoUQUGBmrkyJG6cuWKXZ+YmBjVrVtXVqtVVapU0fz58/McH4kkAACAC9q2bZveffdd1apVy659+PDh+uabb/T5559r/fr1OnbsmJ566inb/qysLLVr106XLl3Spk2btGDBAs2fP18vv/yyrU9CQoLatWunZs2aKS4uTsOGDVPfvn21atWqPMVIIgkAAGBxc9xmQnp6urp166a5c+fK39/f1n727Fl98MEHmjZtmh577DHVq1dP8+bN06ZNm7R582ZJ0urVq7V//359/PHHql27ttq0aaNXXnlFb7/9ti5duiRJmjNnjipWrKipU6eqevXqGjRokJ5++mlNnz49T3GSSAIAADhQZmam0tLS7LbMzMy/PSYiIkLt2rVTixYt7Nq3b9+uy5cv27Xfd999KleunGJjYyVJsbGxqlmzpoKCgmx9wsLClJaWpn379tn6XH/usLAw2zlyi0QSAADAgXMko6Ki5Ovra7dFRUXdNJRPP/1UO3bsuGGfpKQkubu7y8/Pz649KChISUlJtj5/TSKv7b+27+/6pKWlKSMjI9dfG8v/AAAAONCYMWMUGRlp12a1Wm/Y9+jRoxo6dKiio6Pl4eFxJ8L7R6hIAgAAOHCOpNVqlY+Pj912s0Ry+/btSklJUd26dVW4cGEVLlxY69ev15tvvqnChQsrKChIly5dUmpqqt1xycnJCg4OliQFBwfneIr72udb9fHx8ZGnp2euvzYSSQAAABd52KZ58+bas2eP4uLibFv9+vXVrVs3289FihTRmjVrbMfEx8crMTFRoaGhkqTQ0FDt2bNHKSkptj7R0dHy8fFRSEiIrc9fz3Gtz7Vz5BZD2wAAAC6iWLFiqlGjhl2bl5eXihcvbmvv06ePIiMjFRAQIB8fHw0ePFihoaF6+OGHJUmtWrVSSEiInnvuOU2ZMkVJSUkaO3asIiIibJXQAQMGaNasWRo1apR69+6ttWvXasmSJVq5cmWe4iWRBAAAuIvetT19+nS5ubmpU6dOyszMVFhYmN555x3b/kKFCmnFihUaOHCgQkND5eXlpfDwcE2aNMnWp2LFilq5cqWGDx+umTNnqkyZMnr//fcVFhaWp1gshmEYt+3OXIRng5HODgGAg5z8cYqzQwDgIF7uzkvmPJ+Y7bBzZ3w90GHndjYqkgAAACYXDi/o+NYAAABgChVJAACAu2iOpCuhIgkAAABTqEgCAAAwR9IUEkkAAACGtk0h/QYAAIApVCQBAECBZ6EiaQoVSQAAAJhCRRIAABR4VCTNoSIJAAAAU6hIAgAAUJA0hYokAAAATKEiCQAACjzmSJpDIgkAAAo8EklzGNoGAACAKVQkAQBAgUdF0hwqkgAAADCFiiQAACjwqEiaQ0USAAAAplCRBAAAoCBpChVJAAAAmEJFEgAAFHjMkTSHiiQAAABMoSIJAAAKPCqS5pBIAgCAAo9E0hyGtgEAAGAKFUkAAFDgUZE0h4okAAAATKEiCQAAQEHSFCqSAAAAMIWKJAAAKPCYI2kOFUkAAACYQkUSAAAUeFQkzSGRBAAABR6JpDkMbQMAAMAUKpIAAAAUJE2hIgkAAABTqEgCAIACjzmS5lCRBAAAgCkuk0j++OOP6t69u0JDQ/Xnn39KkhYuXKiNGzc6OTIAAJDfWSwWh235mUskkl988YXCwsLk6empnTt3KjMzU5J09uxZvfbaa06ODgAAADfiEonkq6++qjlz5mju3LkqUqSIrb1Ro0basWOHEyMDAAAFARVJc1ziYZv4+Hg1btw4R7uvr69SU1PvfEAAAKBAye8Jn6O4REUyODhYBw8ezNG+ceNGVapUyQkRAQAA4FZcIpHs16+fhg4dqi1btshisejYsWNatGiRRowYoYEDBzo7PAAAkN9ZHLjlYy4xtP3CCy8oOztbzZs314ULF9S4cWNZrVaNGDFCgwcPdnZ4AAAAuAGXSCQtFoteeukljRw5UgcPHlR6erpCQkLk7e3t7NAAAEABwBxJc1xiaPvjjz/WhQsX5O7urpCQED300EMkkQAAAC7OJRLJ4cOHKzAwUF27dtW3336rrKwsZ4cEAAAKEJb/McclEsnjx4/r008/lcVi0TPPPKNSpUopIiJCmzZtcnZoAAAAuAmXSCQLFy6s9u3ba9GiRUpJSdH06dN1+PBhNWvWTJUrV3Z2eAAAIJ9zlYrk7NmzVatWLfn4+MjHx0ehoaH67rvvbPubNm2a4/wDBgywO0diYqLatWunokWLKjAwUCNHjtSVK1fs+sTExKhu3bqyWq2qUqWK5s+fb+p7c4mHbf6qaNGiCgsL05kzZ3TkyBH98ssvzg4JAADkdy4yAl2mTBm9/vrrqlq1qgzD0IIFC9ShQwft3LlT999/v6SryyZOmjTJdkzRokVtP2dlZaldu3YKDg7Wpk2bdPz4cfXo0UNFihSxvXY6ISFB7dq104ABA7Ro0SKtWbNGffv2ValSpRQWFpaneF0mkbxw4YKWLVtmu6GyZcuqS5cuWrp0qbNDAwAAuCMef/xxu8+TJ0/W7NmztXnzZlsiWbRoUQUHB9/w+NWrV2v//v364YcfFBQUpNq1a+uVV17R6NGjNWHCBLm7u2vOnDmqWLGipk6dKkmqXr26Nm7cqOnTp+c5kXSJoe3OnTsrMDBQw4cPV6VKlRQTE6ODBw/qlVde0X333efs8AAAQD7nyKHtzMxMpaWl2W2ZmZm3jCkrK0uffvqpzp8/r9DQUFv7okWLVKJECdWoUUNjxozRhQsXbPtiY2NVs2ZNBQUF2drCwsKUlpamffv22fq0aNHC7lphYWGKjY3N8/fmEhXJQoUKacmSJQoLC1OhQoWcHQ4AAMBtExUVpYkTJ9q1jR8/XhMmTLhh/z179ig0NFQXL16Ut7e3li1bppCQEElS165dVb58eZUuXVq7d+/W6NGjFR8fry+//FKSlJSUZJdESrJ9TkpK+ts+aWlpysjIkKenZ67vzSUSyUWLFjk7BAAAUIA5cpmeMWPGKDIy0q7NarXetH+1atUUFxens2fPaunSpQoPD9f69esVEhKi/v372/rVrFlTpUqVUvPmzXXo0CGnPKDstETyzTffVP/+/eXh4aE333zzb/sOGTLkDkUFAABwe1mt1r9NHK/n7u6uKlWqSJLq1aunbdu2aebMmXr33Xdz9G3QoIEk6eDBg6pcubKCg4O1detWuz7JycmSZJtXGRwcbGv7ax8fH588VSMlJyaS06dPV7du3eTh4aHp06fftJ/FYiGRLEBG9GimVyLaatanP2rk9K/l7+Opcf1aqXmDe1U2yF8nU9P1zfp9mvjuKqWdv2h3bPd29TWkS2NVLVdCaecz9eXa3Rr+xjJJ0qN1K2lwl8aqH1JWPl4eOnj0pGZ8HKNPV+10xm0CBVa7sMd0/NixHO3/erar/jN4iOa8/ZY2x/6kpOPH5e8foKaPNdfAQUNVrFgxW98pUa8qbucOHTp4QBUrVdanS5ffwTtAfuXKC4dnZ2ffdE5lXFycJKlUqVKSpNDQUE2ePFkpKSkKDAyUJEVHR8vHx8c2PB4aGqpvv/3W7jzR0dF28zBzy2mJZEJCwg1/RsFVr3oZ9XnyYe0+8H//yJQq4aNSJX015s0V+iUhReWC/fTWC51UqqSPuo5ZaOs3pEtjDe3aWC++tUJb9x2Vl6e7ypfyt+1/uGYF7T14XNM+Wqfk0+lq+0h1vT++s86mX9R3P7HEFHCnfPzJUmVl/9/byw4dOKCB/XurZViYTqSk6MSJFA17fpQqVa6i48eO6bVXxuvEiRS9Mc1+5KrDk520d89uHfgt/k7fAuBQY8aMUZs2bVSuXDmdO3dOixcvVkxMjFatWqVDhw5p8eLFatu2rYoXL67du3dr+PDhaty4sWrVqiVJatWqlUJCQvTcc89pypQpSkpK0tixYxUREWGrig4YMECzZs3SqFGj1Lt3b61du1ZLlizRypUr8xyvS8yRnDRpkkaMGGG3DpIkZWRk6I033tDLL7/spMhwp3h5umvepK76z2tL9UKv5rb2/b8nq8sLH9k+J/x5ShNmf68PJ3ZRoUJuysrKll8xT40fEKZOz89TzM8HbX33Hjxu+/mNBWvtrvf2ZxvVvMG96tCsBokkcAf5BwTYfZ73wVyVKVtO9eo/JIvFov9Nf8u2r2zZcooYPFxjx1xdTLlw4av/ZI0aM1aSdObMaRJJ3DauUpFMSUlRjx49dPz4cfn6+qpWrVpatWqVWrZsqaNHj+qHH37QjBkzdP78eZUtW1adOnXS2LFjbccXKlRIK1as0MCBAxUaGiovLy+Fh4fbrTtZsWJFrVy5UsOHD9fMmTNVpkwZvf/++3le+kdykURy4sSJGjBgQI5E8sKFC5o4cSKJZAEwY+ST+v6nX7Ru2wG7RPJGfLw9lHb+orKysiVJzR+qKjeLRaVL+mrnpyNUzMuqzbuP6IWZ3+iPlLM3PY+vt4fiD6fc1vsAkHuXL1/Sdyu+VrcePW/6j3h6+jl5eXvbkkjAYVwjj9QHH3xw031ly5bV+vXrb3mO8uXL5xi6vl7Tpk21c+c/n97lEutIGoZxw79Edu3apYDr/uv1ejdam8nIvvK3x8C1/KvlA6pd7R6Ne+e7W/Yt7ltUY3q30IfLt9jaKt5TXG5uFo3q+ZhGTv9aXccslL9PUa14q7+KFL7xclKdmtdSvepl9dE3227bfQDIm3Vr1ujcuXN6osOTN9x/5swZzX13tp56+pk7HBmA3HJqIunv76+AgABZLBbde++9CggIsG2+vr5q2bKlnnnm7/8CiYqKkq+vr9125diWvz0GrqNMoK/eiOygXuM/Uealv/8PgGJeVi2b1ke/JCTr1bmrbe0Wi0XuRQrr+Wlf6Yctv2nr3kSFj1ukKmVLqEm9nEshNK5XWe+Oe1b/eW2pfklIzrEfwJ2xfNlSNXzkUZUMDMqxLz09XUMj/q1KlSrr3wMHOSE6FDSu8q7tu41TxwpmzJghwzDUu3dvTZw4Ub6+vrZ97u7uqlChwi2fILrR2kyBzcc7JF7cfnXuK6OggGKKXTDU1la4cCE9UqeiBjzdUL6PjlF2tiHvolZ9PaOvzl3I1LOjF+jK/x/WlqSkU2mSpF//khSeTD2vk2fPq2ywn931HqlTSV/8r5dGzfhai7/b7tibA3BTx479qa2bY+3mRF5z/ny6Bg3oq6JFvTR15iwVKVLECRECyA2nJpLh4eGSrk76bNiwoam/LG60NpPFjbk0d4t1Px9UvS7/s2t7b9yzij+SoqkfrVN2tqFiXlZ9M7OfMi9d0dMj5uWoXMbuOixJqlqupP78/3Mi/X08VcLXS4lJqbZ+j9atpC+n9tbYt7+1GxoHcOd9vfxLBQQU1yONm9i1p6enK+LffeTu7q7pb72Tp7X3gH8iv1cOHcVpGVdaWpp8fHwkSXXq1FFGRoYyMjJu2PdaP+Q/6Rcytf93++Hl8xmXdPrsBe3/PVnFvKxa8WY/eVrd1Wv8J/Lx8pCPl4ck6URqurKzDR08elLfrN+r/0V20KCopUo7f1GT/tNW8UdStP7/P8XduF5lfTm1t97+7EctX7tHQQFX16S7dOWKzqTd+P93ABwjOztbXy9fpvZPdLR7iCY9PV3/+XcfXczI0Kuvv6Hz59N1/ny6JMnfP8D2Ct3ExCPKuHBBp06eVGbmRcX/enXlhUqVK6tIEfc7f0NAAea0RNLf31/Hjx9XYGCg/Pz8bvhfAtcewsnKyrrBGVAQ1K52jx6qUV6StP/LF+z2Vev4mhKPn5Ek9Zn4qaYMe0JfTuutbMPQxh2/q8PQ921D4N3b1peXp7tG9WyuUT3/76nwDdsPKew/c+7Q3QCQpC2bNynp+DF1ePIpu/Zff9mnvbt3SZI6tG1lt2/F9z+o9D1lJEmvjB+r7T//34NyXf71ZI4+QF5RkDTHYhiG4YwLr1+/Xo0aNVLhwoVv+Sh7kyZN/nb/9TwbjPwnoQFwYSd/nOLsEAA4iJe787K5KiNuvXKIWQf/18Zh53Y2p1Uk/5oc5jVRBAAAuJ2YI2mOS6wj+f3332vjxo22z2+//bZq166trl276syZM06MDAAAFAQWi+O2/MwlEsmRI0cqLe3qEi579uxRZGSk2rZtq4SEhBxL+wAAAMA1uMQ6OQkJCQoJCZEkffHFF3r88cf12muvaceOHWrbtq2TowMAAPkdQ9vmuERF0t3dXRcuXJAk/fDDD2rV6urTegEBAbZKJQAAAFyLS1QkH3nkEUVGRqpRo0baunWrPvvsM0nSb7/9pjJlWMoBAAA4FgVJc1yiIjlr1iwVLlxYS5cu1ezZs3XPPfdIkr777ju1bt3aydEBAADgRlyiIlmuXDmtWLEiR/v06dOdEA0AACho3NwoSZrhEomkJGVlZWn58uX65Zerr7q6//779cQTT9heiQUAAADX4hKJ5MGDB9W2bVv9+eefqlatmiQpKipKZcuW1cqVK1W5cmUnRwgAAPIz5kia4xJzJIcMGaLKlSvr6NGj2rFjh3bs2KHExERVrFhRQ4YMcXZ4AAAgn7NYLA7b8jOXqEiuX79emzdvVkBAgK2tePHiev3119WoUSMnRgYAAICbcYlE0mq16ty5czna09PT5e7u7oSIAABAQZLPC4cO4xJD2+3bt1f//v21ZcsWGYYhwzC0efNmDRgwQE888YSzwwMAAMANuEQi+eabb6py5coKDQ2Vh4eHPDw81LBhQ1WpUkUzZ850dngAACCfY46kOS4xtO3n56evvvpKBw8e1P79+yVJISEhqlKlipMjAwAAwM24RCIpSR988IGmT5+uAwcOSJKqVq2qYcOGqW/fvk6ODAAA5Hf5vXLoKC6RSL788suaNm2aBg8erNDQUElSbGyshg8frsTERE2aNMnJEQIAAOB6LpFIzp49W3PnzlWXLl1sbU888YRq1aqlwYMHk0gCAACHoiBpjkskkpcvX1b9+vVztNerV09XrlxxQkQAAKAgYWjbHJd4avu5557T7Nmzc7S/99576tatmxMiAgAAwK24REVSuvqwzerVq/Xwww9LkrZs2aLExET16NFDkZGRtn7Tpk1zVogAACCfoiBpjkskknv37lXdunUlSYcOHZIklShRQiVKlNDevXtt/Sg7AwAAuA6XSCTXrVvn7BAAAEABRrHKHJeYIwkAAIC7j0tUJAEAAJyJgqQ5VCQBAABgChVJAABQ4DFH0hwqkgAAADCFiiQAACjwKEiaQyIJAAAKPIa2zWFoGwAAAKZQkQQAAAUeBUlzqEgCAADAFCqSAACgwGOOpDlUJAEAAGAKFUkAAFDgUZA0h4okAAAATKEiCQAACjzmSJpDIgkAAAo88khzGNoGAACAKVQkAQBAgcfQtjlUJAEAAGAKFUkAAFDgUZE0h4okAAAATCGRBAAABZ7F4rgtL2bPnq1atWrJx8dHPj4+Cg0N1XfffWfbf/HiRUVERKh48eLy9vZWp06dlJycbHeOxMREtWvXTkWLFlVgYKBGjhypK1eu2PWJiYlR3bp1ZbVaVaVKFc2fP9/U90YiCQAA4CLKlCmj119/Xdu3b9fPP/+sxx57TB06dNC+ffskScOHD9c333yjzz//XOvXr9exY8f01FNP2Y7PyspSu3btdOnSJW3atEkLFizQ/Pnz9fLLL9v6JCQkqF27dmrWrJni4uI0bNgw9e3bV6tWrcpzvBbDMIx/ftuuxbPBSGeHAMBBTv44xdkhAHAQL3fnzVNsOmOTw869amA9ZWZm2rVZrVZZrdZcHR8QEKA33nhDTz/9tEqWLKnFixfr6aefliT9+uuvql69umJjY/Xwww/ru+++U/v27XXs2DEFBQVJkubMmaPRo0frxIkTcnd31+jRo7Vy5Urt3bvXdo3OnTsrNTVV33//fZ7ujYokAAAo8Bw5tB0VFSVfX1+7LSoq6pYxZWVl6dNPP9X58+cVGhqq7du36/Lly2rRooWtz3333ady5copNjZWkhQbG6uaNWvakkhJCgsLU1pamq2qGRsba3eOa32unSMveGobAADAgcaMGaPIyEi7tr+rRu7Zs0ehoaG6ePGivL29tWzZMoWEhCguLk7u7u7y8/Oz6x8UFKSkpCRJUlJSkl0SeW3/tX1/1yctLU0ZGRny9PTM9b2RSAIAgALPkcv/5GUYW5KqVaumuLg4nT17VkuXLlV4eLjWr1/vsPj+CRJJAAAAF+Lu7q4qVapIkurVq6dt27Zp5syZevbZZ3Xp0iWlpqbaVSWTk5MVHBwsSQoODtbWrVvtznftqe6/9rn+Se/k5GT5+PjkqRopMUcSAADAZZb/uZHs7GxlZmaqXr16KlKkiNasWWPbFx8fr8TERIWGhkqSQkNDtWfPHqWkpNj6REdHy8fHRyEhIbY+fz3HtT7XzpEXVCQBAABcxJgxY9SmTRuVK1dO586d0+LFixUTE6NVq1bJ19dXffr0UWRkpAICAuTj46PBgwcrNDRUDz/8sCSpVatWCgkJ0XPPPacpU6YoKSlJY8eOVUREhG14fcCAAZo1a5ZGjRql3r17a+3atVqyZIlWrlyZ53hJJAEAQIHn5iKvSExJSVGPHj10/Phx+fr6qlatWlq1apVatmwpSZo+fbrc3NzUqVMnZWZmKiwsTO+8847t+EKFCmnFihUaOHCgQkND5eXlpfDwcE2aNMnWp2LFilq5cqWGDx+umTNnqkyZMnr//fcVFhaW53hZRxLAXYV1JIH8y5nrSLactdlh544e9LDDzu1sVCQBAECB5yIFybsOiSQAACjwHLn8T37GU9sAAAAwhYokAAAo8NwoSJpCRRIAAACmUJEEAAAFHnMkzaEiCQAAAFOoSAIAgAKPgqQ5VCQBAABgChVJAABQ4FlESdIMEkkAAFDgsfyPOQxtAwAAwBQqkgAAoMBj+R9zqEgCAADAFCqSAACgwKMgaQ4VSQAAAJhCRRIAABR4bpQkTclzRXLBggVauXKl7fOoUaPk5+enhg0b6siRI7c1OAAAALiuPCeSr732mjw9PSVJsbGxevvttzVlyhSVKFFCw4cPv+0BAgAAOJrF4rgtP8vz0PbRo0dVpUoVSdLy5cvVqVMn9e/fX40aNVLTpk1vd3wAAAAOx/I/5uS5Iunt7a1Tp05JklavXq2WLVtKkjw8PJSRkXF7owMAAIDLynNFsmXLlurbt6/q1Kmj3377TW3btpUk7du3TxUqVLjd8QEAADgcBUlz8lyRfPvttxUaGqoTJ07oiy++UPHixSVJ27dvV5cuXW57gAAAAHBNea5I+vn5adasWTnaJ06ceFsCAgAAuNNY/secXCWSu3fvzvUJa9WqZToYAAAA3D1ylUjWrl1bFotFhmHccP+1fRaLRVlZWbc1QAAAAEejHmlOrhLJhIQER8cBAACAu0yuEsny5cs7Og4AAACnYR1Jc/L81LYkLVy4UI0aNVLp0qVtr0WcMWOGvvrqq9saHAAAwJ3gZnHclp/lOZGcPXu2IiMj1bZtW6WmptrmRPr5+WnGjBm3Oz4AAAC4qDwnkm+99Zbmzp2rl156SYUKFbK1169fX3v27LmtwQEAANwJFovFYVt+ludEMiEhQXXq1MnRbrVadf78+dsSFAAAAFxfnhPJihUrKi4uLkf7999/r+rVq9+OmAAAAO4oi8VxW36W5zfbREZGKiIiQhcvXpRhGNq6das++eQTRUVF6f3333dEjAAAAHBBeU4k+/btK09PT40dO1YXLlxQ165dVbp0ac2cOVOdO3d2RIwAAAAOld/nMjpKnhNJSerWrZu6deumCxcuKD09XYGBgbc7LgAAALg4U4mkJKWkpCg+Pl7S1Sy+ZMmSty0oAACAOym/r/foKHl+2ObcuXN67rnnVLp0aTVp0kRNmjRR6dKl1b17d509e9YRMQIAADgUy/+Yk+dEsm/fvtqyZYtWrlyp1NRUpaamasWKFfr555/173//2xExAgAAwAXleWh7xYoVWrVqlR555BFbW1hYmObOnavWrVvf1uAAAADuhPxdN3ScPFckixcvLl9f3xztvr6+8vf3vy1BAQAAwPXlOZEcO3asIiMjlZSUZGtLSkrSyJEjNW7cuNsaHAAAwJ3gZrE4bMvPcjW0XadOHbvJogcOHFC5cuVUrlw5SVJiYqKsVqtOnDjBPEkAAIACIleJZMeOHR0cBgAAgPPk88Khw+QqkRw/fryj4wAAAMBdxvSC5AAAAPlFfl/v0VHynEhmZWVp+vTpWrJkiRITE3Xp0iW7/adPn75twQEAAMB15fmp7YkTJ2ratGl69tlndfbsWUVGRuqpp56Sm5ubJkyY4IAQAQAAHMticdyWn+U5kVy0aJHmzp2r559/XoULF1aXLl30/vvv6+WXX9bmzZsdESMAAIBDsfyPOXlOJJOSklSzZk1Jkre3t+392u3bt9fKlStvb3QAAABwWXlOJMuUKaPjx49LkipXrqzVq1dLkrZt2yar1Xp7owMAALgDGNo2J8+J5JNPPqk1a9ZIkgYPHqxx48apatWq6tGjh3r37n3bAwQAACgooqKi9OCDD6pYsWIKDAxUx44dFR8fb9enadOmslgsdtuAAQPs+iQmJqpdu3YqWrSoAgMDNXLkSF25csWuT0xMjOrWrSur1aoqVapo/vz5eY43z09tv/7667afn332WZUvX16bNm1S1apV9fjjj+c5AAAAAGdzleV/1q9fr4iICD344IO6cuWKXnzxRbVq1Ur79++Xl5eXrV+/fv00adIk2+eiRYvafs7KylK7du0UHBysTZs26fjx4+rRo4eKFCmi1157TZKUkJCgdu3aacCAAVq0aJHWrFmjvn37qlSpUgoLC8t1vBbDMIzbcN9KSUnR+++/rxdffPF2nO4f8Www0tkhAHCQkz9OcXYIABzEy915yVzEsl8cdu63n6xu+tgTJ04oMDBQ69evV+PGjSVdrUjWrl1bM2bMuOEx3333ndq3b69jx44pKChIkjRnzhyNHj1aJ06ckLu7u0aPHq2VK1dq7969tuM6d+6s1NRUff/997mO77YtSH78+HGNGzfOJRLJMz+94ewQADiI/4ODnB0CAAfJ2DnLadfO81y/PMjMzFRmZqZdm9VqzdWzJdceag4ICLBrX7RokT7++GMFBwfr8ccf17hx42xVydjYWNWsWdOWREpSWFiYBg4cqH379qlOnTqKjY1VixYt7M4ZFhamYcOG5eneHPm9AQAAFHhRUVHy9fW126Kiom55XHZ2toYNG6ZGjRqpRo0atvauXbvq448/1rp16zRmzBgtXLhQ3bt3t+1PSkqySyIl2T4nJSX9bZ+0tDRlZGTk+t54RSIAACjwHDlHcsyYMYqMjLRry001MiIiQnv37tXGjRvt2vv372/7uWbNmipVqpSaN2+uQ4cOqXLlyrcn6FwikQQAAAWemwOnZ+Z2GPuvBg0apBUrVmjDhg0qU6bM3/Zt0KCBJOngwYOqXLmygoODtXXrVrs+ycnJkqTg4GDb/15r+2sfHx8feXp65jrOXCeS12fS1ztx4kSuLwoAAICcDMPQ4MGDtWzZMsXExKhixYq3PCYuLk6SVKpUKUlSaGioJk+erJSUFAUGBkqSoqOj5ePjo5CQEFufb7/91u480dHRCg0NzVO8uU4kd+7cecs+154mAgAAuJs4siKZFxEREVq8eLG++uorFStWzDan0dfXV56enjp06JAWL16stm3bqnjx4tq9e7eGDx+uxo0bq1atWpKkVq1aKSQkRM8995ymTJmipKQkjR07VhEREbbK6IABAzRr1iyNGjVKvXv31tq1a7VkyZI8v6Xwti3/40ouXrl1HwB3J57aBvIvZz61Hfn1rw4797Qn7st135vN1Zw3b5569uypo0ePqnv37tq7d6/Onz+vsmXL6sknn9TYsWPl4+Nj63/kyBENHDhQMTEx8vLyUnh4uF5//XUVLvx/NcSYmBgNHz5c+/fvV5kyZTRu3Dj17NkzT/dGIgngrkIiCeRfzkwkn/8m/tadTJr6eDWHndvZWP4HAAAApvDUNgAAKPBcZY7k3YaKJAAAAEyhIgkAAAo8B65Hnq+Zqkj++OOP6t69u0JDQ/Xnn39KkhYuXJhj5XUAAIC7gZvF4rAtP8tzIvnFF18oLCxMnp6e2rlzp+0l5GfPntVrr7122wMEAACAa8pzIvnqq69qzpw5mjt3rooUKWJrb9SokXbs2HFbgwMAALgT3By45Wd5vr/4+PgbvsHG19dXqamptyMmAAAA3AXynEgGBwfr4MGDOdo3btyoSpUq3ZagAAAA7iSLxXFbfpbnRLJfv34aOnSotmzZIovFomPHjmnRokUaMWKEBg4c6IgYAQAA4ILyvPzPCy+8oOzsbDVv3lwXLlxQ48aNZbVaNWLECA0ePNgRMQIAADhUfn+62lHynEhaLBa99NJLGjlypA4ePKj09HSFhITI29vbEfEBAADARZlekNzd3V0hISG3MxYAAACnoCBpTp4TyWbNmsnyN9/22rVr/1FAAAAAdxrv2jYnz4lk7dq17T5fvnxZcXFx2rt3r8LDw29XXAAAAHBxeU4kp0+ffsP2CRMmKD09/R8HBAAAcKfxsI05t23B9e7du+vDDz+8XacDAACAizP9sM31YmNj5eHhcbtOBwAAcMdQkDQnz4nkU089ZffZMAwdP35cP//8s8aNG3fbAgMAAIBry3Mi6evra/fZzc1N1apV06RJk9SqVavbFhgAAMCdwlPb5uQpkczKylKvXr1Us2ZN+fv7OyomAAAA3AXy9LBNoUKF1KpVK6WmpjooHAAAgDvP4sA/+Vmen9quUaOGfv/9d0fEAgAA4BRuFsdt+VmeE8lXX31VI0aM0IoVK3T8+HGlpaXZbQAAACgYcj1HctKkSXr++efVtm1bSdITTzxh96pEwzBksViUlZV1+6MEAABwoPxeOXSUXCeSEydO1IABA7Ru3TpHxgMAAIC7RK4TScMwJElNmjRxWDAAAADOYGFFclPyNEeSLxkAAADX5GkdyXvvvfeWyeTp06f/UUAAAAB3GnMkzclTIjlx4sQcb7YBAABAwZSnRLJz584KDAx0VCwAAABOwew9c3KdSDI/EgAA5Fdu5Dmm5Pphm2tPbQMAAABSHiqS2dnZjowDAADAaXjYxpw8vyIRAAAAkPL4sA0AAEB+xBRJc6hIAgAAwBQqkgAAoMBzEyVJM6hIAgAAwBQqkgAAoMBjjqQ5JJIAAKDAY/kfcxjaBgAAgClUJAEAQIHHKxLNoSIJAAAAU6hIAgCAAo+CpDlUJAEAAGAKFUkAAFDgMUfSHCqSAAAAMIWKJAAAKPAoSJpDIgkAAAo8hmjN4XsDAACAKSSSAACgwLNYLA7b8iIqKkoPPvigihUrpsDAQHXs2FHx8fF2fS5evKiIiAgVL15c3t7e6tSpk5KTk+36JCYmql27dipatKgCAwM1cuRIXblyxa5PTEyM6tatK6vVqipVqmj+/Pl5/t5IJAEAAFzE+vXrFRERoc2bNys6OlqXL19Wq1atdP78eVuf4cOH65tvvtHnn3+u9evX69ixY3rqqads+7OystSuXTtdunRJmzZt0oIFCzR//ny9/PLLtj4JCQlq166dmjVrpri4OA0bNkx9+/bVqlWr8hSvxTAM45/ftmu5eOXWfQDcnfwfHOTsEAA4SMbOWU679kc/H3XYuXvUL2v62BMnTigwMFDr169X48aNdfbsWZUsWVKLFy/W008/LUn69ddfVb16dcXGxurhhx/Wd999p/bt2+vYsWMKCgqSJM2ZM0ejR4/WiRMn5O7urtGjR2vlypXau3ev7VqdO3dWamqqvv/++1zHR0USAADAgTIzM5WWlma3ZWZm5urYs2fPSpICAgIkSdu3b9fly5fVokULW5/77rtP5cqVU2xsrCQpNjZWNWvWtCWRkhQWFqa0tDTt27fP1uev57jW59o5cotEEgAAFHhuFovDtqioKPn6+tptUVFRt4wpOztbw4YNU6NGjVSjRg1JUlJSktzd3eXn52fXNygoSElJSbY+f00ir+2/tu/v+qSlpSkjIyPX3xvL/wAAADjQmDFjFBkZaddmtVpveVxERIT27t2rjRs3Oiq0f4xEEgAAFHiOXI/carXmKnH8q0GDBmnFihXasGGDypQpY2sPDg7WpUuXlJqaaleVTE5OVnBwsK3P1q1b7c537anuv/a5/knv5ORk+fj4yNPTM9dxMrQNAAAKPIvFcVteGIahQYMGadmyZVq7dq0qVqxot79evXoqUqSI1qxZY2uLj49XYmKiQkNDJUmhoaHas2ePUlJSbH2io6Pl4+OjkJAQW5+/nuNan2vnyC0qkgAAAC4iIiJCixcv1ldffaVixYrZ5jT6+vrK09NTvr6+6tOnjyIjIxUQECAfHx8NHjxYoaGhevjhhyVJrVq1UkhIiJ577jlNmTJFSUlJGjt2rCIiImyV0QEDBmjWrFkaNWqUevfurbVr12rJkiVauXJlnuJl+R8AdxWW/wHyL2cu//PJzj8ddu4ude7Jdd+bLWA+b9489ezZU9LVBcmff/55ffLJJ8rMzFRYWJjeeecd27C1JB05ckQDBw5UTEyMvLy8FB4ertdff12FC/9fDTEmJkbDhw/X/v37VaZMGY0bN852jVzHSyIJ4G5CIgnkXySSdx+GtgEAQIHHQyPm8L0BAADAFCqSAACgwLvZ3ET8PSqSAAAAMIWKJAAAKPCoR5pDRRIAAACmUJEEAAAFHnMkzSGRBAAABR5DtObwvQEAAMAUKpIAAKDAY2jbHCqSAAAAMIWKJAAAKPCoR5pDRRIAAACmUJEEAAAFHlMkzaEiCQAAAFOoSAIAgALPjVmSppBIAgCAAo+hbXMY2gYAAIApLpVIXrp0SfHx8bpy5YqzQwEAAAWIxYF/8jOXSCQvXLigPn36qGjRorr//vuVmJgoSRo8eLBef/11J0cHAACAG3GJRHLMmDHatWuXYmJi5OHhYWtv0aKFPvvsMydGBgAACgKLxXFbfuYSD9ssX75cn332mR5++GG7d13ef//9OnTokBMjAwAAwM24RCJ54sQJBQYG5mg/f/48L1EHAAAOx/I/5rjE0Hb9+vW1cuVK2+dryeP777+v0NBQZ4UFAACAv+ESFcnXXntNbdq00f79+3XlyhXNnDlT+/fv16ZNm7R+/XpnhwcAAPI5BkDNcYmK5COPPKK4uDhduXJFNWvW1OrVqxUYGKjY2FjVq1fP2eEBAIB8jodtzHGJiqQkVa5cWXPnznV2GAAAAMgll6hItmjRQvPnz1daWpqzQwEAAAUQC5Kb4xKJ5P33368xY8YoODhY//rXv/TVV1/p8uXLzg4LAAAAf8MlEsmZM2fqzz//1PLly+Xl5aUePXooKChI/fv352EbAADgcG4Wx235mUskkpLk5uamVq1aaf78+UpOTta7776rrVu36rHHHnN2aAAAALgBl3nY5pqkpCR9+umn+vjjj7V792499NBDzg4JAADkc/l9LqOjuERFMi0tTfPmzVPLli1VtmxZzZ49W0888YQOHDigzZs3Ozs8AAAA3IBLVCSDgoLk7++vZ599VlFRUapfv76zQwIAAAVIfl/v0VFcIpH8+uuv1bx5c7m5uUSBFAAAFDAMbZvjEolky5YtnR0CAAAA8shpiWTdunW1Zs0a+fv7q06dOrL8TU15x44ddzAyAABQ0OT3ZXocxWmJZIcOHWS1Wm0//10iCQAAANdjMQzDcHYQt9vFK86OAICj+D84yNkhAHCQjJ2znHbtH38747BzP3qvv8PO7Wwu8XRLpUqVdOrUqRztqampqlSpkhMiAgAAwK24xMM2hw8fVlZWVo72zMxM/fHHH06ICM6WnJysGdPe0E8//qiLFzNUtlx5TXr1Nd1fo6YkadyLL+jrr5bZHdOw0SOa/d4HkqRtW7eob68eNzz3ok8/V42atRx7AwByGNGrpV4Z0kGzFq3TyP99IUl666XOeqxBNZUq6av0jExt3pWgsTO/0m+Hk+2O7f54Aw3p/piqlg9U2vmL+jJ6p4a/vsS2v0bV0prxwjOqd395nTyTrtmfrte0BT/c0fvD3Y0ZduY4NZH8+uuvbT+vWrVKvr6+ts9ZWVlas2aNKlas6IzQ4ERpZ8+qZ/cuqv9QA709Z678A/yVeOSIfHx87fo1euRRTXo1yvbZ3d3d9nPt2nW0JmajXf+335qpLVtibckogDunXkg59enUSLt/sy8O7PzlqD79bpuOHj+jAN+iemlAO614J0L3tR+v7OyrM6+GdH9MQ597TC9OX66tew/Ly9Nd5UsXt52jmJeHvnlnkNZt+VWDJ3+qGlXv0Zzx3ZR6LkMffvnTHb1PoKBxaiLZsWNHSZLFYlF4eLjdviJFiqhChQqaOnWqEyKDM334wVwFBQfrlcn/lySWKVM2Rz93d3eVKFnyhucoct2+y5cva926NerStTsPdgF3mJenu+a91lP/eeUTvdC3td2+vyZ6icdPa+Lb32jbkhdVvnRxJfxxUn7FPDX+P+3VadgcxWz9zdZ374Fjtp87t60v9yKF9O8Ji3T5SpZ++T1JtardoyHdm5FIItf4l8Ecp86RzM7OVnZ2tsqVK6eUlBTb5+zsbGVmZio+Pl7t27d3ZohwgvXr1ur++2toxPAhavpoqJ7p1FFffL4kR7+ft21V00dD9US7ML06abxSU28+UXr9urU6m5qqjk92cmToAG5gxphn9f2Pe7VuS/zf9ivq4a4eTzyshD9O6o+kq7/PzR++T25uFpUO9NPOL8bq4Pev6OP/9laZID/bcQ1qVdRPOw7q8pX/myIVvekXVasYLL9ing65J+Q/bhaLw7b8zCXmSCYkJJg+NjMzU5mZmXZtRiGrbWkh3H3++OOolnz2iZ4L76U+/Qdo3549+m/UqypSpIie6PikJKnhI4+qeYuWuqdMGR09elRvzZim//y7nxYu/kyFChXKcc5lXy5Vw0aPKCg4+E7fDlCg/SusnmrfV1aPdJ9y0z79//WoJg/rKO+iVsUnJKndwFm2pLBimRJyc7NoVO9WGvHGF0pLz9D4iPZaMXuQHnwmSpevZCmouI8O/2n/wGbK6XOSpKASPko9l+G4GwQKOJdIJCXp/PnzWr9+vRITE3Xp0iW7fUOGDLnpcVFRUZo4caJd20vjxmvsyxMcESbugOxsQ/fXqKEhwyIlSdWrh+jgwQP6fMmntkSyTdt2tv5V762me++tpnatW+jnbVvV4OFQu/MlJyVp008b9cbUGXfsHgBIZYL89MbITmo/cJYyL918XbZPv9umNVt+VXAJHw3r0UIf/7e3Hus1TZmXrshisci9SGE9P2Wp1mz+VZIUPma+Dke/piYP3qsfYn+5U7eDfC5/1w0dxyUSyZ07d6pt27a6cOGCzp8/r4CAAJ08eVJFixZVYGDg3yaSY8aMUWRkpF2bUYhq5N2sZMmSqlS5sl1bpUqV9EP0qpseU6ZsWfn7+ysx8UiORHL5si/k6+enJs0ec0i8AG6sTvVyCiruo9jFo21thQsX0iN1K2vAs43l22CYsrMNpaVfVFr6RR1KPKGtuw/r+IYp6vDYA1ry/XYlnUyTJP36e5LtHCfPpOtkarrKBl9dmy/5VJqCihezu3ZgwNXPyf//eACO4RKJ5PDhw/X4449rzpw58vX11ebNm1WkSBF1795dQ4cO/dtjrdacw9gsSH53q12nrg5fN93hyOHDKl36npsek5yUpNTUVJUsYf/wjWEY+mr5l3r8iY4qUqSIQ+IFcGPrtsar3tOT7drem9hd8QnJmjo/2vZU9l9ZLBZZdLUKKUmxcb9LkqpWCNSfKamSJH+foirh563E46clSVt2J2hCxOMqXNhNV65kS7o6tzI+IYlhbeQeJUlTXGJB8ri4OD3//PNyc3NToUKFlJmZqbJly2rKlCl68cUXnR0e7rDuPcK1Z/cuvf/eHCUeOaJvV3yjpUuX6NkuXSVJF86f17T//Ve7d8Xpzz//0JbNsRo6+D8qW668Gj7yqN25tm7ZrD//+ENPdXraGbcCFGjpFzK1/9Bxu+18xiWdPnte+w8dV4V7imtE71aqU72sygb76+EHKmrRG32UkXlZqzbukyQdTEzRN+t26X8jn9bDD1RUSOVSmjvpOcUfTtb6n68+xf3Zdz/r0uUszRnfTdUrBevpVnUV0bWp3vx4nTNvHygQXKIiWaRIEbm5Xc1pAwMDlZiYqOrVq8vX11dHjx51cnS402rUrKVpM2fpzRnT9O7st3VPmTIaNfpFtWv/hCTJrVAh/Rb/m77+arnOpZ1TYGCgQhs2UsTgoXZrSUrSsi+WqnbtOqpYqfKNLgXAiTIvXVGjOpU1qGtT+fsUVcqpc9q446Ca9ZyqE2fSbf36jFuoKSOe0pdvDlR2tqGN2w+oQ8TbtupjWvpFPf6fWZrxwjPatHi0TqWmK+q971j6B3lioSRpiku8a7tVq1bq2bOnunbtqn79+mn37t0aMmSIFi5cqDNnzmjLli15Oh9D20D+xbu2gfzLme/a3nLorMPO3aCy76073aVcYmj7tddeU6lSpSRJkydPlr+/vwYOHKgTJ07ovffec3J0AAAgv7NYHLflZy6RSNavX1/NmjWTdHVo+/vvv1daWpq2b9+uBx54wMnRAQCA/M7iwC2vNmzYoMcff1ylS5eWxWLR8uXL7fb37Nnz6oNpf9lat7Z/a9Tp06fVrVs3+fj4yM/PT3369FF6erpdn927d+vRRx+Vh4eH7dmUvHKJRBIAAABXnT9/Xg888IDefvvtm/Zp3bq1jh8/bts++eQTu/3dunXTvn37FB0drRUrVmjDhg3q37+/bX9aWppatWql8uXLa/v27XrjjTc0YcKEPI8Eu8TDNnXq1Lnh+48tFos8PDxUpUoV9ezZ01a1BAAAuK1caAi6TZs2atOmzd/2sVqtCr7J29p++eUXff/999q2bZvq168vSXrrrbfUtm1b/e9//1Pp0qW1aNEiXbp0SR9++KHc3d11//33Ky4uTtOmTbNLOG/FJSqSrVu31u+//y4vLy81a9ZMzZo1k7e3tw4dOqQHH3xQx48fV4sWLfTVV185O1QAAIA8yczMVFpamt12/eud8yomJkaBgYGqVq2aBg4cqFOn/u81obGxsfLz87MlkZLUokULubm52R5gjo2NVePGje1WOwkLC1N8fLzOnDmT6zhcIpE8efKknn/+ef3444+aOnWqpk6dqg0bNmjEiBE6f/68Vq9erbFjx+qVV15xdqgAACAfsjjwT1RUlHx9fe22qKgo07G2bt1aH330kdasWaP//ve/Wr9+vdq0aaOsrKvvqE9KSlJgYKDdMYULF1ZAQICSkpJsfYKCguz6XPt8rU9uuMTQ9pIlS7R9+/Yc7Z07d1a9evU0d+5cdenSRdOmTXNCdAAAAObd6HXO17+VLy86d+5s+7lmzZqqVauWKleurJiYGDVv3tz0ec1wiYqkh4eHNm3alKN906ZN8vDwkCRlZ2fbfgYAALidHLn8j9VqlY+Pj932TxLJ61WqVEklSpTQwYMHJUnBwcFKSUmx63PlyhWdPn3aNq8yODhYycnJdn2ufb7Z3MsbcYmK5ODBgzVgwABt375dDz74oCRp27Ztev/9922vSFy1apVq167txCgBAABczx9//KFTp07Z1uQODQ1Vamqqtm/frnr16kmS1q5dq+zsbDVo0MDW56WXXtLly5dVpEgRSVJ0dLSqVasmf3//XF/bJd5sI0mLFi3SrFmzFB8fL0mqVq2aBg8erK5dr75fOSMjw/YU963wZhsg/+LNNkD+5cw32+w4nOawc9et4JOn/unp6bbqYp06dTRt2jQ1a9ZMAQEBCggI0MSJE9WpUycFBwfr0KFDGjVqlM6dO6c9e/bYKp1t2rRRcnKy5syZo8uXL6tXr16qX7++Fi9eLEk6e/asqlWrplatWmn06NHau3evevfurenTp+fpqW2XSSRvJxJJIP8ikQTyL6cmkkccmEiWz1siGRMTc8MlD8PDwzV79mx17NhRO3fuVGpqqkqXLq1WrVrplVdesXt45vTp0xo0aJC++eYbubm5qVOnTnrzzTfl7e1t67N7925FRERo27ZtKlGihAYPHqzRo0fnKVaXSSRTU1O1dOlS/f777xoxYoQCAgK0Y8cOBQUF6Z577snTuUgkgfyLRBLIv0gk7z4uMUdy9+7datGihXx9fXX48GH17dtXAQEB+vLLL5WYmKiPPvrI2SECAIB8zOJKK5LfRVziqe3IyEj17NlTBw4csJsD2bZtW23YsMGJkQEAAOBmXKIiuW3bNr377rs52u+55548LYoJAABgxg3e1IxccImKpNVqVVpazrkJv/32m0qWLOmEiAAAAHArLpFIPvHEE5o0aZIuX74sSbJYLEpMTNTo0aPVqVMnJ0cHAADyO4sDt/zMJRLJqVOnKj09XYGBgcrIyFCTJk1UpUoVeXt7a/Lkyc4ODwAAADfgEnMkfX19FR0drZ9++km7du1Senq66tatqxYtWjg7NAAAUBDk99Khg7hEIilJa9as0Zo1a5SSkqLs7Gz9+uuvttXXP/zwQydHBwAA8jOW/zHHJRLJiRMnatKkSapfv75KlSolC49OAQAAuDyXSCTnzJmj+fPn67nnnnN2KAAAoACihmWOSzxsc+nSJTVs2NDZYQAAACAPXCKR7Nu3r20+JAAAwJ3G8j/muMTQ9sWLF/Xee+/phx9+UK1atVSkSBG7/dOmTXNSZAAAALgZl0gkd+/erdq1a0uS9u7da7ePB28AAIDDkW6Y4hKJ5Lp165wdAgAAAPLIJRJJAAAAZ2IdSXNc4mEbAAAA3H2oSAIAgAKPRzLMIZEEAAAFHnmkOQxtAwAAwBQqkgAAAJQkTaEiCQAAAFOoSAIAgAKP5X/MoSIJAAAAU6hIAgCAAo/lf8yhIgkAAABTqEgCAIACj4KkOSSSAAAAZJKmMLQNAAAAU6hIAgCAAo/lf8yhIgkAAABTqEgCAIACj+V/zKEiCQAAAFOoSAIAgAKPgqQ5VCQBAABgChVJAAAASpKmkEgCAIACj+V/zGFoGwAAAKZQkQQAAAUey/+YQ0USAAAAplCRBAAABR4FSXOoSAIAAMAUKpIAAACUJE2hIgkAAABTqEgCAIACj3UkzSGRBAAABR7L/5jD0DYAAABMoSIJAAAKPAqS5lCRBAAAgClUJAEAQIHHHElzqEgCAADAFBJJAAAAWRy45c2GDRv0+OOPq3Tp0rJYLFq+fLndfsMw9PLLL6tUqVLy9PRUixYtdODAAbs+p0+fVrdu3eTj4yM/Pz/16dNH6enpdn12796tRx99VB4eHipbtqymTJmS51hJJAEAAFzI+fPn9cADD+jtt9++4f4pU6bozTff1Jw5c7RlyxZ5eXkpLCxMFy9etPXp1q2b9u3bp+joaK1YsUIbNmxQ//79bfvT0tLUqlUrlS9fXtu3b9cbb7yhCRMm6L333stTrBbDMAxzt+m6Ll5xdgQAHMX/wUHODgGAg2TsnOW0a/+Zeslh577Hz930sRaLRcuWLVPHjh0lXa1Gli5dWs8//7xGjBghSTp79qyCgoI0f/58de7cWb/88otCQkK0bds21a9fX5L0/fffq23btvrjjz9UunRpzZ49Wy+99JKSkpLk7n41vhdeeEHLly/Xr7/+muv4qEgCAIACz5ED25mZmUpLS7PbMjMzTcWZkJCgpKQktWjRwtbm6+urBg0aKDY2VpIUGxsrPz8/WxIpSS1atJCbm5u2bNli69O4cWNbEilJYWFhio+P15kzZ3IdD4kkAACAA0VFRcnX19dui4qKMnWupKQkSVJQUJBde1BQkG1fUlKSAgMD7fYXLlxYAQEBdn1udI6/XiM3WP4HAAAUeI5c/mfMmDGKjIy0a7NarY674B1EIgkAAOBAVqv1tiWOwcHBkqTk5GSVKlXK1p6cnKzatWvb+qSkpNgdd+XKFZ0+fdp2fHBwsJKTk+36XPt8rU9uMLQNAAAKPIsD/9xOFStWVHBwsNasWWNrS0tL05YtWxQaGipJCg0NVWpqqrZv327rs3btWmVnZ6tBgwa2Phs2bNDly5dtfaKjo1WtWjX5+/vnOh4SSQAAABeSnp6uuLg4xcXFSbr6gE1cXJwSExNlsVg0bNgwvfrqq/r666+1Z88e9ejRQ6VLl7Y92V29enW1bt1a/fr109atW/XTTz9p0KBB6ty5s0qXLi1J6tq1q9zd3dWnTx/t27dPn332mWbOnJljCP5WGNoGAABwoVck/vzzz2rWrJnt87XkLjw8XPPnz9eoUaN0/vx59e/fX6mpqXrkkUf0/fffy8PDw3bMokWLNGjQIDVv3lxubm7q1KmT3nzzTdt+X19frV69WhEREapXr55KlCihl19+2W6tydxgHUkAdxXWkQTyL2euI5mUdvnWnUwK9inisHM7GxVJAABQ4LlQQfKuQiIJAAAKPEcu/5Of8bANAAAATKEiCQAACrzbvUxPQUFFEgAAAKZQkQQAAKAgaQoVSQAAAJhCRRIAABR4FCTNoSIJAAAAU6hIAgCAAo91JM0hkQQAAAUey/+Yw9A2AAAATKEiCQAACjyGts2hIgkAAABTSCQBAABgCokkAAAATGGOJAAAKPCYI2kOFUkAAACYQkUSAAAUeKwjaQ6JJAAAKPAY2jaHoW0AAACYQkUSAAAUeBQkzaEiCQAAAFOoSAIAAFCSNIWKJAAAAEyhIgkAAAo8lv8xh4okAAAATKEiCQAACjzWkTSHiiQAAABMoSIJAAAKPAqS5pBIAgAAkEmawtA2AAAATKEiCQAACjyW/zGHiiQAAABMoSIJAAAKPJb/MYeKJAAAAEyxGIZhODsIwKzMzExFRUVpzJgxslqtzg4HwG3E7zfg+kgkcVdLS0uTr6+vzp49Kx8fH2eHA+A24vcbcH0MbQMAAMAUEkkAAACYQiIJAAAAU0gkcVezWq0aP348E/GBfIjfb8D18bANAAAATKEiCQAAAFNIJAEAAGAKiSQAAABMIZHEXSkmJkYWi0Wpqal/269ChQqaMWPGHYkJgPNMmDBBtWvXdnYYQIHDwza4K126dEmnT59WUFCQLBaL5s+fr2HDhuVILE+cOCEvLy8VLVrUOYECuO0sFouWLVumjh072trS09OVmZmp4sWLOy8woAAq7OwAADPc3d0VHBx8y34lS5a8A9EAcDZvb295e3s7OwygwGFoGw7TtGlTDRo0SIMGDZKvr69KlCihcePG6VoR/MyZM+rRo4f8/f1VtGhRtWnTRgcOHLAdf+TIET3++OPy9/eXl5eX7r//fn377beS7Ie2Y2Ji1KtXL509e1YWi0UWi0UTJkyQZD+03bVrVz377LN2MV6+fFklSpTQRx99JEnKzs5WVFSUKlasKE9PTz3wwANaunSpg78p4O7QtGlTDRkyRKNGjVJAQICCg4Ntv2uSlJqaqr59+6pkyZLy8fHRY489pl27dtmd49VXX1VgYKCKFSumvn376oUXXrAbkt62bZtatmypEiVKyNfXV02aNNGOHTts+ytUqCBJevLJJ2WxWGyf/zq0vXr1anl4eOQYoRg6dKgee+wx2+eNGzfq0Ucflaenp8qWLashQ4bo/Pnz//h7AgoSEkk41IIFC1S4cGFt3bpVM2fO1LRp0/T+++9Lknr27Kmff/5ZX3/9tWJjY2UYhtq2bavLly9LkiIiIpSZmakNGzZoz549+u9//3vDikPDhg01Y8YM+fj46Pjx4zp+/LhGjBiRo1+3bt30zTffKD093da2atUqXbhwQU8++aQkKSoqSh999JHmzJmjffv2afjw4erevbvWr1/viK8HuOssWLBAXl5e2rJli6ZMmaJJkyYpOjpakvSvf/1LKSkp+u6777R9+3bVrVtXzZs31+nTpyVJixYt0uTJk/Xf//5X27dvV7ly5TR79my78587d07h4eHauHGjNm/erKpVq6pt27Y6d+6cpKuJpiTNmzdPx48ft33+q+bNm8vPz09ffPGFrS0rK0ufffaZunXrJkk6dOiQWrdurU6dOmn37t367LPPtHHjRg0aNOj2f2lAfmYADtKkSROjevXqRnZ2tq1t9OjRRvXq1Y3ffvvNkGT89NNPtn0nT540PD09jSVLlhiGYRg1a9Y0JkyYcMNzr1u3zpBknDlzxjAMw5g3b57h6+ubo1/58uWN6dOnG4ZhGJcvXzZKlChhfPTRR7b9Xbp0MZ599lnDMAzj4sWLRtGiRY1NmzbZnaNPnz5Gly5d8nz/QH7TpEkT45FHHrFre/DBB43Ro0cbP/74o+Hj42NcvHjRbn/lypWNd9991zAMw2jQoIERERFht79Ro0bGAw88cNNrZmVlGcWKFTO++eYbW5skY9myZXb9xo8fb3eeoUOHGo899pjt86pVqwyr1Wr7O6NPnz5G//797c7x448/Gm5ubkZGRsZN4wFgj4okHOrhhx+WxWKxfQ4NDdWBAwe0f/9+FS5cWA0aNLDtK168uKpVq6ZffvlFkjRkyBC9+uqratSokcaPH6/du3f/o1gKFy6sZ555RosWLZIknT9/Xl999ZWtQnHw4EFduHBBLVu2tM238vb21kcffaRDhw79o2sD+UWtWrXsPpcqVUopKSnatWuX0tPTVbx4cbvfn4SEBNvvT3x8vB566CG746//nJycrH79+qlq1ary9fWVj4+P0tPTlZiYmKc4u3XrppiYGB07dkzS1Wpou3bt5OfnJ0natWuX5s+fbxdrWFiYsrOzlZCQkKdrAQUZD9vAZfXt21dhYWFauXKlVq9eraioKE2dOlWDBw82fc5u3bqpSZMmSklJUXR0tDw9PdW6dWtJsg15r1y5Uvfcc4/dcbzrF7iqSJEidp8tFouys7OVnp6uUqVKKSYmJscx15K33AgPD9epU6c0c+ZMlS9fXlarVaGhobp06VKe4nzwwQdVuXJlffrppxo4cKCWLVum+fPn2/anp6fr3//+t4YMGZLj2HLlyuXpWkBBRiIJh9qyZYvd52tznkJCQnTlyhVt2bJFDRs2lCSdOnVK8fHxCgkJsfUvW7asBgwYoAEDBmjMmDGaO3fuDRNJd3d3ZWVl3TKehg0bqmzZsvrss8/03Xff6V//+pftH8aQkBBZrVYlJiaqSZMm/+S2gQKnbt26SkpKUuHChW0PwFyvWrVq2rZtm3r06GFru36O408//aR33nlHbdu2lSQdPXpUJ0+etOtTpEiRXP2+d+vWTYsWLVKZMmXk5uamdu3a2cW7f/9+ValSJbe3COAGGNqGQyUmJioyMlLx8fH65JNP9NZbb2no0KGqWrWqOnTooH79+mnjxo3atWuXunfvrnvuuUcdOnSQJA0bNkyrVq1SQkKCduzYoXXr1ql69eo3vE6FChWUnp6uNWvW6OTJk7pw4cJNY+ratavmzJmj6Oho27C2JBUrVkwjRozQ8OHDtWDBAh06dEg7duzQW2+9pQULFtzeLwbIZ1q0aKHQ0FB17NhRq1ev1uHDh7Vp0ya99NJL+vnnnyVJgwcP1gcffKAFCxbowIEDevXVV7V792676S9Vq1bVwoUL9csvv2jLli3q1q2bPD097a5VoUIFrVmzRklJSTpz5sxNY+rWrZt27NihyZMn6+mnn7YbWRg9erQ2bdqkQYMGKS4uTgcOHNBXX33FwzZAHpFIwqF69OihjIwMPfTQQ4qIiNDQoUPVv39/SVefuqxXr57at2+v0NBQGYahb7/91lYhzMrKUkREhKpXr67WrVvr3nvv1TvvvHPD6zRs2FADBgzQs88+q5IlS2rKlCk3jalbt27av3+/7rnnHjVq1Mhu3yuvvKJx48YpKirKdt2VK1eqYsWKt+kbAfIni8Wib7/9Vo0bN1avXr107733qnPnzjpy5IiCgoIkXf3dGzNmjEaMGKG6desqISFBPXv2lIeHh+08H3zwgc6cOaO6devqueee05AhQxQYGGh3ralTpyo6Olply5ZVnTp1bhpTlSpV9NBDD2n37t12/9EoXZ3ruX79ev3222969NFHVadOHb388ssqXbr0bfxWgPyPN9vAYZo2baratWvzikIAN9WyZUsFBwdr4cKFzg4FgAnMkQQA3BEXLlzQnDlzFBYWpkKFCumTTz7RDz/8YFuHEsDdh0QSAHBHXBv+njx5si5evKhq1arpiy++UIsWLZwdGgCTGNoGAACAKTxsAwAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEoBpPXv2VMeOHW2fmzZtqmHDht3xOGJiYmSxWJSamuqwa1x/r2bciTgB4E4ikQTymZ49e8pischiscjd3V1VqlTRpEmTdOXKFYdf+8svv9Qrr7ySq753OqmqUKECb1kCgNuMBcmBfKh169aaN2+eMjMz9e233yoiIkJFihTRmDFjcvS9dOmS3N3db8t1AwICbst5AAB3ByqSQD5ktVoVHBys8uXLa+DAgWrRooW+/vprSf83RDt58mSVLl1a1apVkyQdPXpUzzzzjPz8/BQQEKAOHTro8OHDtnNmZWUpMjJSfn5+Kl68uEaNGqXr32dw/dB2ZmamRo8erbJly8pqtapKlSr64IMPdPjwYTVr1kyS5O/vL4vFop49e0qSsrOzFRUVpYoVK8rT01MPPPCAli5danedb7/9Vvfee688PT3VrFkzuzjNyMrKUp8+fWzXrFatmmbOnHnDvhMnTlTJkiXl4+OjAQMG6NKlS7Z9uYn9r44cOaLHH39c/v7+8vLy0v33369vv/32H90LANxJVCSBAsDT01OnTp2yfV6zZo18fHxs7zi+fPmywsLCFBoaqh9//FGFCxfWq6++qtatW2v37t1yd3fX1KlTNX/+fH344YeqXr26pk6dqmXLlumxxx676XV79Oih2NhYvfnmm3rggQeUkJCgkydPqmzZsvriiy/UqVMnxcfHy8fHR56enpKkqKgoffzxx5ozZ46qVq2qDRs2qHv37ipZsqSaNGmio0eP6qmnnlJERIT69++vn3/+Wc8///w/+n6ys7NVpkwZff755ypevLg2bdqk/v37q1SpUnrmmWfsvjcPDw/FxMTo8OHD6tWrl4oXL67JkyfnKvbrRURE6NKlS9qwYYO8vLy0f/9+eXt7/6N7AYA7ygCQr4SHhxsdOnQwDMMwsrOzjejoaMNqtRojRoyw7Q8KCjIyMzNtxyxcuNCoVq2akZ2dbWvLzMw0PD09jVWrVhmGYRilSpUypkyZYtt/+fJlo0yZMrZrGYZhNGnSxBg6dKhhGIYRHx9vSDKio6NvGOe6desMScaZM2dsbRcvXjSKFi1qbNq0ya5vnz59jC5duhiGYRhjxowxQkJC7PaPHj06x7muV758eWP69Ok33X+9iIgIo1OnTrbP4eHhRkBAgHH+/Hlb2+zZsw1vb28jKysrV7Fff881a9Y0JkyYkOuYAMDVUJEE8qEVK1bI29tbly9fVnZ2trp27aoJEybY9tesWdNuXuSuXbt08OBBFStWzO48Fy9e1KFDh3T27FkdP35cDRo0sO0rXLiw6tevn2N4+5q4uDgVKlTohpW4mzl48KAuXLigli1b2rVfunRJderUkST98ssvdnFIUmhoaK6vcTNvv/22PvzwQyUmJiojI0OXLl1S7dq17fo88MADKlq0qN1109PTdfToUaWnp98y9usNGTJEAwcO1OrVq9WiRQt16tRJtWrV+sf3AgB3CokkkA81a9ZMs2fPlru7u0qXLq3Che1/1b28vOw+p6enq169elq0aFGOc5UsWdJUDNeGqvMiPT1dkrRy5Urdc889dvusVqupOHLj008/1YgRIzR16lSFhoaqWLFieuONN7Rly5Zcn8NM7H379lVYWJhWrlyp1atXKyoqSlOnTtXgwYPN3wwA3EEkkkA+5OXlpSpVquS6f926dfXZZ58pMDBQPj4+N+xTqlQpbdmyRY0bN5YkXblyRdu3b1fdunVv2L9mzZrKzs7W+vXr1aJFixz7r1VEs7KybG0hISGyWq1KTEy8aSWzevXqtgeHrtm8efOtb/Jv/PTTT2rYsKH+85//2NoOHTqUo9+uXbuUkZFhS5I3b94sb29vlS1bVgEBAbeM/UbKli2rAQMGaMCAARozZozmzp1LIgngrsFT2wDUrVs3lShRQh06dNCPP/6ohIQExcTEaMiQIfrjjz8kSUOHDtXrr7+u5cuX69dff9V//vOfv10DskKFCgoPD1fv3r21fPly2zmXLFkiSSpfvrwsFotWrFihEydOKD09XcWKFdOIESM0fPhwLViwQIcOHdKOHTv01ltvacGCBZKkAQMG6MCBAxo5cqTi4+O1ePFizZ8/P1f3+eeffyouLs5uO3PmjKpWraqff/5Zq1at0m+//aZx48Zp27ZtOY6/dOmS+vTpo/379+vbb7/V+PHjNWjQILm5ueUq9usNGzZMq1atUkJCgnbs2KF169apevXquboXAHAJzp6kCeD2+uvDNnnZf/z4caNHjx5GiRIlDKvValSqVMno16+fcfbsWcMwrj5cM3ToUMPHx8fw8/MzIiMjjR49etz0YRvDMIyMjAxj+PDhRqlSpQx3d3ejSpUqxocffmjbP2nSJCM4ONiwWCxGeHi4YRhXHxCaMWOGUa1aNaNIkSJGyZIljbCwMGP9+vW247755hujSpUqhtVqNR599FHjww8/zNXDNpJybAsXLjQuXrxo9OzZ0/D19TX8/PyMgQMHGi+88ILxwAMP5PjeXn75ZaN48eKGt7e30a9fP+PixYu2PreK/fqHbQYNGmRUrlzZsFqtRsmSJY3nnnvOOHny5E3vAQBcjcUwbjJTHgAAAPgbDG0DAADAFBJJAAAAmEIiCQAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU/4f3iKLrLVHTFYAAAAASUVORK5CYII=",
            "text/plain": [
              "<Figure size 800x600 with 2 Axes>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "plot_confusion_matrix(y_test, y_pred, ['positive', 'negative'], 'NB')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 62,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2580FJCGs_oQ",
        "outputId": "118f79e2-6b57-4cc0-a631-c2ef8a7e317e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Classification Report NB:\n",
            "              precision    recall  f1-score   support\n",
            "\n",
            "    negative       0.86      0.87      0.86      5017\n",
            "    positive       0.87      0.86      0.86      4983\n",
            "\n",
            "    accuracy                           0.86     10000\n",
            "   macro avg       0.86      0.86      0.86     10000\n",
            "weighted avg       0.86      0.86      0.86     10000\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# Imprimir as métricas de avaliação\n",
        "print_evaluation_metrics(y_test, y_pred, 'NB')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "x0JBy6nXvdjC"
      },
      "source": [
        "# Conclusão\n",
        "\n",
        "É possível verificar no relatório de classificação que precisão e recall estão variando entre 86 a 87%. A métrica **F1-Score** combina precisão e recall, possui valor de aproximadamente 86%, o que indica um bom equilíbrio entre precisão e recall. A **Acurácia (accuracy)** geral do modelo é de 86%, o que significa que ele classificou corretamente aproximadamente 86% de todos os exemplos no conjunto de teste.\n",
        "\n",
        "O modelo Naive Bayes com vetorização TF-IDF conseguiu alcançar uma precisão, recall e F1-Score bastante equilibrados para ambas as classes, com uma acurácia geral de 86%. Podemos afirmar que o modelo é capaz de fazer previsões precisas em relação ao sentimento das revisões. Assim, podemos afirmar que o modelo estatístico possui um desempenho consideravelmente superior em relação à abordagem simbólica.\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.11.5"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}