Spaces:
Sleeping
Sleeping
File size: 105,487 Bytes
c1f801a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "lawNHLqffR_m"
},
"source": [
"# SCC0633/SCC5908 - Processamento de Linguagem Natural\n",
"> **Docente:** Thiago Alexandre Salgueiro Pardo \\\n",
"> **Estagiário PAE:** Germano Antonio Zani Jorge\n",
"\n",
"\n",
"# Integrantes do Grupo: GPTrouxas\n",
"> André Guarnier De Mitri - 11395579 \\\n",
"> Daniel Carvalho - 10685702 \\\n",
"> Fernando - 11795342 \\\n",
"> Lucas Henrique Sant'Anna - 10748521 \\\n",
"> Magaly L Fujimoto - 4890582"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pV6WGoBln8id"
},
"source": [
"# New Section"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Abordagem Estatístico\n",
"A arquitetura da solução estatística/neural envolve duas abordagens que\n",
"serão descritas neste documento. A primeira abordagem envolve utilizar\n",
"TF-IDF e Naive Bayes. E a segunda abordagem irá utilizar Word2Vec e um\n",
"modelo transformers pré-treinado da família BERT, realizando finetuning do\n",
"modelo.\n",
"\n",
"Na primeira abordagem, utilizaremos o TF-IDF, que leva em consideração a\n",
"frequência de ocorrência dos termos em um corpus e gera uma sequência de\n",
"vetores que serão fornecidos ao Naive Bayes para classificação da review como\n",
"positiva ou negativa.\n",
"\n",
"\n",
"Na segunda abordagem, utilizaremos o Word2Vec para vetorizar as reviews.\n",
"Após dividir em treino e teste, faremos o fine tuning de um modelo do tipo BERT\n",
"para o nosso problema e dataset específico. Com o BERT adaptado, faremos a\n",
"classificação de nossos textos, medindo o seu desempenho com F1 score e\n",
"acurácia.\n",
"\n",
"![alt text](../imagens/BERT_TDIDF.png)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vfP54aryxZBg"
},
"source": [
"\n",
"## # Etapas da Abordagem Estatística\n",
"\n",
"1. **Bibliotecas**: Importamos as bibliotecas necessárias, considerando pandas para manipulação de dados, train_test_split para dividir o conjunto de dados em conjuntos de treinamento e teste, TfidfVectorizer para vetorização de texto usando TF-IDF, MultinomialNB para implementar o classificador Naive Bayes Multinomial e algumas métricas de avaliação.\n",
"\n",
"2. **Conjunto de dados**: Carregar o conjunto de dados e armazená-lo em um dataframe usando pandas.\n",
"\n",
"3. **Dividir o conjunto de dados**: Usamos `train_test_split` para dividir o DataFrame em conjuntos de treinamento e teste.\n",
"\n",
"4. **TF-IDF**: Usamos `TfidfVectorizer` para converter as revisões de texto em vetores numéricos usando a técnica TF-IDF. Em seguida, ajustamos e transformamos tanto o conjunto de treinamento quanto o conjunto de teste.\n",
"\n",
"5. **Naive Bayes**: Treinamos um classificador Naive Bayes Multinomial e usamos o modelo treinado para prever os sentimentos no conjunto de teste usando `predict`.\n",
"\n",
"6. **Avaliação e Resultados**: Salvamos os resultados em um novo dataframe `results_df` contendo as revisões do conjunto de teste, os sentimentos originais e os sentimentos previstos pelo modelo. Além disso, avaliamos o modelo verificando algumas métricas e a matriz de confusão.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TbLraa4UhWDJ"
},
"source": [
"\n",
"## # Baixando, Carregando os dados e Pré Processamento\n",
"\n",
"1. Transformar todos os textos em lowercase \\\\\n",
"2. Remoção de caracteres especiais \\\\\n",
"3. Remoção de stop words \\\\\n",
"4. Lematização (Lemmatization) \\\\\n",
"5. Tokenização \\\\"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"id": "bIWmIe0qfTbE"
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "Wf0n2yPdAn4C",
"outputId": "37eb3c4d-40c1-41a0-9b1a-d93ed6e272f3"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"db\",\n \"rows\": 50000,\n \"fields\": [\n {\n \"column\": \"review\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 49582,\n \"samples\": [\n \"\\\"Soul Plane\\\" is a horrible attempt at comedy that only should appeal people with thick skulls, bloodshot eyes and furry pawns. <br /><br />The plot is not only incoherent but also non-existent, acting is mostly sub sub-par with a gang of highly moronic and dreadful characters thrown in for bad measure, jokes are often spotted miles ahead and almost never even a bit amusing. This movie lacks any structure and is full of racial stereotypes that must have seemed old even in the fifties, the only thing it really has going for it is some pretty ladies, but really, if you want that you can rent something from the \\\"Adult\\\" section. OK?<br /><br />I can hardly see anything here to recommend since you'll probably have a lot a better and productive time chasing rats with a sledgehammer or inventing waterproof teabags or whatever.<br /><br />2/10\",\n \"Guest from the Future tells a fascinating story of time travel, friendship, battle of good and evil -- all with a small budget, child actors, and few special effects. Something for Spielberg and Lucas to learn from. ;) A sixth-grader Kolya \\\"Nick\\\" Gerasimov finds a time machine in the basement of a decrepit building and travels 100 years into the future. He discovers a near-perfect, utopian society where robots play guitars and write poetry, everyone is kind to each other and people enjoy everything technology has to offer. Alice is the daughter of a prominent scientist who invented a device called Mielophone that allows to read minds of humans and animals. The device can be put to both good and bad use, depending on whose hands it falls into. When two evil space pirates from Saturn who want to rule the universe attempt to steal Mielophone, it falls into the hands of 20th century school boy Nick. With the pirates hot on his tracks, he travels back to his time, followed by the pirates, and Alice. Chaos, confusion and funny situations follow as the luckless pirates try to blend in with the earthlings. Alice enrolls in the same school Nick goes to and demonstrates superhuman abilities in PE class. The catch is, Alice doesn't know what Nick looks like, while the pirates do. Also, the pirates are able to change their appearance and turn literally into anyone. (Hmm, I wonder if this is where James Cameron got the idea for Terminator...) Who gets to Nick -- and Mielophone -- first? Excellent plot, non-stop adventures, and great soundtrack. I wish Hollywood made kid movies like this one...\",\n \"\\\"National Treasure\\\" (2004) is a thoroughly misguided hodge-podge of plot entanglements that borrow from nearly every cloak and dagger government conspiracy clich\\u00e9 that has ever been written. The film stars Nicholas Cage as Benjamin Franklin Gates (how precious is that, I ask you?); a seemingly normal fellow who, for no other reason than being of a lineage of like-minded misguided fortune hunters, decides to steal a 'national treasure' that has been hidden by the United States founding fathers. After a bit of subtext and background that plays laughably (unintentionally) like Indiana Jones meets The Patriot, the film degenerates into one misguided whimsy after another \\u0096 attempting to create a 'Stanley Goodspeed' regurgitation of Nicholas Cage and launch the whole convoluted mess forward with a series of high octane, but disconnected misadventures.<br /><br />The relevancy and logic to having George Washington and his motley crew of patriots burying a king's ransom someplace on native soil, and then, going through the meticulous plan of leaving clues scattered throughout U.S. currency art work, is something that director Jon Turteltaub never quite gets around to explaining. Couldn't Washington found better usage for such wealth during the start up of the country? Hence, we are left with a mystery built on top of an enigma that is already on shaky ground by the time Ben appoints himself the new custodian of this untold wealth. Ben's intentions are noble \\u0096 if confusing. He's set on protecting the treasure. For who and when?\\u0085your guess is as good as mine.<br /><br />But there are a few problems with Ben's crusade. First up, his friend, Ian Holmes (Sean Bean) decides that he can't wait for Ben to make up his mind about stealing the Declaration of Independence from the National Archives (oh, yeah \\u0096 brilliant idea!). Presumably, the back of that famous document holds the secret answer to the ultimate fortune. So Ian tries to kill Ben. The assassination attempt is, of course, unsuccessful, if overly melodramatic. It also affords Ben the opportunity to pick up, and pick on, the very sultry curator of the archives, Abigail Chase (Diane Kruger). She thinks Ben is clearly a nut \\u0096 at least at the beginning. But true to action/romance form, Abby's resolve melts quicker than you can say, \\\"is that the Hope Diamond?\\\" The film moves into full X-File-ish mode, as the FBI, mistakenly believing that Ben is behind the theft, retaliate in various benign ways that lead to a multi-layering of action sequences reminiscent of Mission Impossible meets The Fugitive. Honestly, don't those guys ever get 'intelligence' information that is correct? In the final analysis, \\\"National Treasure\\\" isn't great film making, so much as it's a patchwork rehash of tired old bits from other movies, woven together from scraps, the likes of which would make IL' Betsy Ross blush.<br /><br />The Buena Vista DVD delivers a far more generous treatment than this film is deserving of. The anamorphic widescreen picture exhibits a very smooth and finely detailed image with very rich colors, natural flesh tones, solid blacks and clean whites. The stylized image is also free of blemishes and digital enhancements. The audio is 5.1 and delivers a nice sonic boom to your side and rear speakers with intensity and realism. Extras include a host of promotional junket material that is rather deep and over the top in its explanation of how and why this film was made. If only, as an audience, we had had more clarification as to why Ben and co. were chasing after an illusive treasure, this might have been one good flick. Extras conclude with the theatrical trailer, audio commentary and deleted scenes. Not for the faint-hearted \\u0096 just the thick-headed.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sentiment\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"negative\",\n \"positive\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "db"
},
"text/html": [
"\n",
" <div id=\"df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>One of the other reviewers has mentioned that ...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>A wonderful little production. <br /><br />The...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>I thought this was a wonderful way to spend ti...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Basically there's a family where a little boy ...</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Petter Mattei's \"Love in the Time of Money\" is...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2cb947b9-c799-42cf-8e37-5ee6fe2a7cec');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-711a5547-60a9-42cc-80f0-6083c4c007ee\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-711a5547-60a9-42cc-80f0-6083c4c007ee')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-711a5547-60a9-42cc-80f0-6083c4c007ee button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" review sentiment\n",
"0 One of the other reviewers has mentioned that ... positive\n",
"1 A wonderful little production. <br /><br />The... positive\n",
"2 I thought this was a wonderful way to spend ti... positive\n",
"3 Basically there's a family where a little boy ... negative\n",
"4 Petter Mattei's \"Love in the Time of Money\" is... positive"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db = pd.read_csv('imdb_reviews.csv')\n",
"db.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6PlfPScGMF1_",
"outputId": "2a0bd4a1-e22a-429d-82a4-5984eeab7b9d"
},
"outputs": [
{
"data": {
"text/plain": [
"sentiment\n",
"positive 25000\n",
"negative 25000\n",
"Name: count, dtype: int64"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db['sentiment'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Kev0EaSmMa4N",
"outputId": "eab73a61-ba36-4d72-e4f2-82236f9f2880"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Quantidade de valores faltantes para cada variável do dataset:\n",
"review 0\n",
"sentiment 0\n",
"dtype: int64\n"
]
}
],
"source": [
"valores_ausentes = db.isnull().sum(axis=0)\n",
"print('Quantidade de valores faltantes para cada variável do dataset:')\n",
"print(valores_ausentes)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 276
},
"id": "1AI3rN0KMuUq",
"outputId": "7ea5c91b-362e-49eb-82a7-6e8535f0e591"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
"[nltk_data] Package stopwords is already up-to-date!\n",
"[nltk_data] Downloading package wordnet to /root/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"db\",\n \"rows\": 50000,\n \"fields\": [\n {\n \"column\": \"review\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 49574,\n \"samples\": [\n \"moving intriguing absorbing however story little choppy hard follow time although two principal actor great job seeing senn penn acting every fiber stealing every frame made memorable movie later movie revealed one role actor also showed comedic flair sweet lowdown surprisingly talented light weight used think \",\n \"gem go direct video fabulous art direction mood never miss beat truman show meet metropolis excellent cast never seen laura dern better bill macy always fabulous said david paymer meat loaf incredible film \",\n \"watched movie dismayed say least movie failed communicate audience language would put shame street loafer plot father forcing none son marry seems far fetched idea grandmother asking grand kid mess enemy would draw feeble minded attention waiting whole movie laugh laugh stupidity waste 3 hour convince movie even worth first look hope save time \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sentiment\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"negative\",\n \"positive\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "db"
},
"text/html": [
"\n",
" <div id=\"df-5fddbeb1-c284-468b-b861-38e8e649d721\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>one reviewer mentioned watching 1 oz episode h...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>wonderful little production filming technique ...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>thought wonderful way spend time hot summer we...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>basically family little boy jake think zombie ...</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>petter mattei love time money visually stunnin...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5fddbeb1-c284-468b-b861-38e8e649d721')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-5fddbeb1-c284-468b-b861-38e8e649d721 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-5fddbeb1-c284-468b-b861-38e8e649d721');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-430854d7-7cfd-4ac6-9592-bec216bf2654\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-430854d7-7cfd-4ac6-9592-bec216bf2654')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-430854d7-7cfd-4ac6-9592-bec216bf2654 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" review sentiment\n",
"0 one reviewer mentioned watching 1 oz episode h... positive\n",
"1 wonderful little production filming technique ... positive\n",
"2 thought wonderful way spend time hot summer we... positive\n",
"3 basically family little boy jake think zombie ... negative\n",
"4 petter mattei love time money visually stunnin... positive"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import re\n",
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from nltk.stem import PorterStemmer\n",
"from nltk.stem import WordNetLemmatizer\n",
"\n",
"def lowercase_text(text):\n",
" return text.lower()\n",
"\n",
"def remove_html(text):\n",
" return re.sub(r'<[^<]+?>', '', text)\n",
"\n",
"def remove_url(text):\n",
" return re.sub(r'http[s]?://\\S+|www\\.\\S+', '', text)\n",
"\n",
"def remove_punctuations(text):\n",
" tokens_list = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\]^_`{|}~'\n",
" for char in text:\n",
" if char in tokens_list:\n",
" text = text.replace(char, ' ')\n",
"\n",
" return text\n",
"\n",
"def remove_emojis(text):\n",
" emojis = re.compile(\"[\"\n",
" u\"\\U0001F600-\\U0001F64F\"\n",
" u\"\\U0001F300-\\U0001F5FF\"\n",
" u\"\\U0001F680-\\U0001F6FF\"\n",
" u\"\\U0001F1E0-\\U0001F1FF\"\n",
" u\"\\U00002500-\\U00002BEF\"\n",
" u\"\\U00002702-\\U000027B0\"\n",
" u\"\\U00002702-\\U000027B0\"\n",
" u\"\\U000024C2-\\U0001F251\"\n",
" u\"\\U0001f926-\\U0001f937\"\n",
" u\"\\U00010000-\\U0010ffff\"\n",
" u\"\\u2640-\\u2642\"\n",
" u\"\\u2600-\\u2B55\"\n",
" u\"\\u200d\"\n",
" u\"\\u23cf\"\n",
" u\"\\u23e9\"\n",
" u\"\\u231a\"\n",
" u\"\\ufe0f\"\n",
" u\"\\u3030\"\n",
" \"]+\", re.UNICODE)\n",
"\n",
" text = re.sub(emojis, '', text)\n",
" return text\n",
"\n",
"def remove_stop_words(text):\n",
" stop_words = stopwords.words('english')\n",
" new_text = ''\n",
" for word in text.split():\n",
" if word not in stop_words:\n",
" new_text += ''.join(f'{word} ')\n",
"\n",
" return new_text.strip()\n",
"\n",
"def lem_words(text):\n",
" lemma = WordNetLemmatizer()\n",
" new_text = ''\n",
" for word in text.split():\n",
" new_text += ''.join(f'{lemma.lemmatize(word)} ')\n",
"\n",
" return new_text\n",
"\n",
"def preprocess_text(text):\n",
" text = lowercase_text(text)\n",
" text = remove_html(text)\n",
" text = remove_url(text)\n",
" text = remove_punctuations(text)\n",
" text = remove_emojis(text)\n",
" text = remove_stop_words(text)\n",
" text = lem_words(text)\n",
"\n",
" return text\n",
"\n",
"nltk.download('stopwords')\n",
"nltk.download('wordnet')\n",
"db['review'] = db['review'].apply(preprocess_text)\n",
"db.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QgufZpgHnPa4"
},
"source": [
"# **Conjunto de Treino e teste**"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"id": "s0lJ6Q0tnPka"
},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"X= db['review']\n",
"y= db['sentiment']\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 12)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nz4erCEJuD4-",
"outputId": "88d57536-66e7-4d9b-e016-bf40183d4c45"
},
"outputs": [
{
"data": {
"text/plain": [
"35235 disagree people saying lousy horror film good ...\n",
"36936 husband wife doctor team carole nile nelson mo...\n",
"46486 like cast pretty much however story sort unfol...\n",
"27160 movie awful bad bear expend anything word avoi...\n",
"19490 purchased blood castle dvd ebay buck knowing s...\n",
" ... \n",
"36482 strange thing see film scene work rather weakl...\n",
"40177 saw cheap dvd release title entity force since...\n",
"19709 one peculiar oft used romance movie plot one s...\n",
"38555 nothing positive say meandering nonsense huffi...\n",
"14155 low moment life bewildered depressed sitting r...\n",
"Name: review, Length: 40000, dtype: object"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6LX-6e-QlioJ"
},
"source": [
"# **TD-IDF e Naive Bayes**"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"id": "gscB9-obNusA"
},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix,classification_report\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.preprocessing import StandardScaler as encoder\n",
"from sklearn.metrics import (\n",
" accuracy_score,\n",
" confusion_matrix,\n",
" ConfusionMatrixDisplay,\n",
" f1_score,\n",
")\n",
"\n",
"\n",
"tfidf = TfidfVectorizer()\n",
"tfidf_train = tfidf.fit_transform(X_train)\n",
"tfidf_test = tfidf.transform(X_test)\n",
"\n",
"from sklearn.naive_bayes import MultinomialNB\n",
"\n",
"naive_bayes = MultinomialNB()\n",
"\n",
"naive_bayes.fit(tfidf_train, y_train)\n",
"y_pred = naive_bayes.predict(tfidf_test)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "RfJ7AHMZvAb8",
"outputId": "685701e1-b1e8-47fb-9dc5-1bc04dd3894b"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"results_df\",\n \"rows\": 10000,\n \"fields\": [\n {\n \"column\": \"review\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 9990,\n \"samples\": [\n \"saw lot film charles dickens christmas carol one best atmosphere exactly book actor george c scott others great unfortunately often watch film germany switzerland \",\n \"loved first season quality went little bit second season however great middle pegasus third season fairly novel original ok fourth season started going downhill fast never even began giving u explanation really starting need hell cylon plan two cylon faction point angel kara leading fleet devastated earth 1 kind past last five cylons survive reincarnation question everywhere answer nowhere come end earth 2 earth past well okay destroying fleet giving technology giving kind urban life spreading thousand people paper thinly across planet anti science anti reason anti life philosophy show seems humanity forever trapped cycle going nature romanticism decadent capitalist society inventing destructive ruin everything without vision without hope grander future humanity antithetical proper science fiction even get started angel religious claptrap worst kind ultimate disappointment whole happened happen thing related previous incarnation series earth know making new show somehow consistent old would definitive stroke genius frakkin shame 1 10 \",\n \"guest future tell fascinating story time travel friendship battle good evil small budget child actor special effect something spielberg lucas learn sixth grader kolya nick gerasimov find time machine basement decrepit building travel 100 year future discovers near perfect utopian society robot play guitar write poetry everyone kind people enjoy everything technology offer alice daughter prominent scientist invented device called mielophone allows read mind human animal device put good bad use depending whose hand fall two evil space pirate saturn want rule universe attempt steal mielophone fall hand 20th century school boy nick pirate hot track travel back time followed pirate alice chaos confusion funny situation follow luckless pirate try blend earthling alice enrolls school nick go demonstrates superhuman ability pe class catch alice know nick look like pirate also pirate able change appearance turn literally anyone hmm wonder james cameron got idea terminator get nick mielophone first excellent plot non stop adventure great soundtrack wish hollywood made kid movie like one \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original sentiment\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"positive\",\n \"negative\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"predicted sentiment\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"positive\",\n \"negative\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "results_df"
},
"text/html": [
"\n",
" <div id=\"df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>original sentiment</th>\n",
" <th>predicted sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>34622</th>\n",
" <td>hard tell noonan marshall trying ape abbott co...</td>\n",
" <td>negative</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1163</th>\n",
" <td>well start one reviewer said know real treat s...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7637</th>\n",
" <td>wife kid opinion absolute abc classic seen eve...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7045</th>\n",
" <td>surprise basic copycat comedy classic nutty pr...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43847</th>\n",
" <td>josef von sternberg directs magnificent silent...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-dc3f6f1f-8cfd-42e3-89f7-04a33171d9a5');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-399174c9-298e-4ffd-acce-3dabb38c956b\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-399174c9-298e-4ffd-acce-3dabb38c956b')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-399174c9-298e-4ffd-acce-3dabb38c956b button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" review original sentiment \\\n",
"34622 hard tell noonan marshall trying ape abbott co... negative \n",
"1163 well start one reviewer said know real treat s... positive \n",
"7637 wife kid opinion absolute abc classic seen eve... positive \n",
"7045 surprise basic copycat comedy classic nutty pr... positive \n",
"43847 josef von sternberg directs magnificent silent... positive \n",
"\n",
" predicted sentiment \n",
"34622 negative \n",
"1163 positive \n",
"7637 positive \n",
"7045 positive \n",
"43847 positive "
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Criando DataFrame com resultados\n",
"results_df = pd.DataFrame({'review': X_test, 'original sentiment': y_test, 'predicted sentiment': y_pred})\n",
"results_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8Xq2ABXYtsjk"
},
"source": [
"## Avaliação"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"id": "3lXqDNhSrhsZ"
},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix, classification_report\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_confusion_matrix(y_true, y_pred, labels, model_name):\n",
" cm = confusion_matrix(y_true, y_pred, labels=labels)\n",
" plt.figure(figsize=(8, 6))\n",
" sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
" plt.xlabel('Predicted Labels')\n",
" plt.ylabel('True Labels')\n",
" plt.title(f'Confusion Matrix {model_name}')\n",
" plt.show()\n",
"\n",
"# Função para calcular e imprimir as métricas de avaliação\n",
"def print_evaluation_metrics(y_true, y_pred, model_name):\n",
" print(f\"Classification Report {model_name}:\")\n",
" print(classification_report(y_true, y_pred))\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 564
},
"id": "ybfb_GKDuqmb",
"outputId": "3e4c3a98-8962-4ce8-9856-2252f769a1b8"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAIjCAYAAACwHvu2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3deVxV1f7/8fdB5YAgkwpozkMmqTmVoeWQA06lZbecEuerF0dyyNIcyujadSpLy0rNtDJLK62UVDQTh1Qci9RQLAWcEFFEhf37w5/n2xFN2Hk8R3g9fezH5ay99t6ffR4X/fRZa69tMQzDEAAAAJBHbs4OAAAAAHcnEkkAAACYQiIJAAAAU0gkAQAAYAqJJAAAAEwhkQQAAIApJJIAAAAwhUQSAAAAppBIAgAAwBQSSaCAOHDggFq1aiVfX19ZLBYtX778tp7/8OHDslgsmj9//m09792sadOmatq0qbPDAACHIZEE7qBDhw7p3//+typVqiQPDw/5+PioUaNGmjlzpjIyMhx67fDwcO3Zs0eTJ0/WwoULVb9+fYde707q2bOnLBaLfHx8bvg9HjhwQBaLRRaLRf/73//yfP5jx45pwoQJiouLuw3RmnftHqZOnZpj3/z582WxWPTzzz/b2iZMmGA7xmKxyM3NTaVKlVL79u21efPmOxk6gHyqsLMDAAqKlStX6l//+pesVqt69OihGjVq6NKlS9q4caNGjhypffv26b333nPItTMyMhQbG6uXXnpJgwYNcsg1ypcvr4yMDBUpUsQh57+VwoUL68KFC/rmm2/0zDPP2O1btGiRPDw8dPHiRVPnPnbsmCZOnKgKFSqodu3auT5u9erVpq53K2+88YYGDhyookWL5qr/7Nmz5e3trezsbB09elRz585V48aNtXXr1jzdDwBcj0QSuAMSEhLUuXNnlS9fXmvXrlWpUqVs+yIiInTw4EGtXLnSYdc/ceKEJMnPz89h17BYLPLw8HDY+W/FarWqUaNG+uSTT3IkkosXL1a7du30xRdf3JFYLly4oKJFi8rd3f22n7t27dqKi4vTnDlzFBkZmatjnn76aZUoUcL2uWPHjqpRo4Y+//xzEkkA/whD28AdMGXKFKWnp+uDDz6wSyKvqVKlioYOHWr7fOXKFb3yyiuqXLmyrFarKlSooBdffFGZmZl2x1WoUEHt27fXxo0b9dBDD8nDw0OVKlXSRx99ZOszYcIElS9fXpI0cuRIWSwWVahQQdLVIeFrP//VtSHRv4qOjtYjjzwiPz8/eXt7q1q1anrxxRdt+282R3Lt2rV69NFH5eXlJT8/P3Xo0EG//PLLDa938OBB9ezZU35+fvL19VWvXr104cKFm3+x1+natau+++47paam2tq2bdumAwcOqGvXrjn6nz59WiNGjFDNmjXl7e0tHx8ftWnTRrt27bL1iYmJ0YMPPihJ6tWrl22Y+Np9Nm3aVDVq1ND27dvVuHFjFS1a1Pa9XD9HMjw8XB4eHjnuPywsTP7+/jp27Ngt77FRo0Z67LHHNGXKFNPTIYKDgyVdreICwD9BIgncAd98840qVaqkhg0b5qp/37599fLLL6tu3bqaPn26mjRpoqioKHXu3DlH34MHD+rpp59Wy5YtNXXqVPn7+6tnz57at2+fJOmpp57S9OnTJUldunTRwoULNWPGjDzFv2/fPrVv316ZmZmaNGmSpk6dqieeeEI//fTT3x73ww8/KCwsTCkpKZowYYIiIyO1adMmNWrUSIcPH87R/5lnntG5c+cUFRWlZ555RvPnz9fEiRNzHedTTz0li8WiL7/80ta2ePFi3Xfffapbt26O/r///ruWL1+u9u3ba9q0aRo5cqT27NmjJk2a2JK66tWra9KkSZKk/v37a+HChVq4cKEaN25sO8+pU6fUpk0b1a5dWzNmzFCzZs1uGN/MmTNVsmRJhYeHKysrS5L07rvvavXq1XrrrbdUunTpXN3nhAkTlJycrNmzZ+eq/+nTp3Xy5EmlpKRo586d6tevnzw8PHJUbgEgzwwADnX27FlDktGhQ4dc9Y+LizMkGX379rVrHzFihCHJWLt2ra2tfPnyhiRjw4YNtraUlBTDarUazz//vK0tISHBkGS88cYbducMDw83ypcvnyOG8ePHG3/962H69OmGJOPEiRM3jfvaNebNm2drq127thEYGGicOnXK1rZr1y7Dzc3N6NGjR47r9e7d2+6cTz75pFG8ePGbXvOv9+Hl5WUYhmE8/fTTRvPmzQ3DMIysrCwjODjYmDhx4g2/g4sXLxpZWVk57sNqtRqTJk2ytW3bti3HvV3TpEkTQ5IxZ86cG+5r0qSJXduqVasMScarr75q/P7774a3t7fRsWPHW96jYRiGJCMiIsIwDMNo1qyZERwcbFy4cMEwDMOYN2+eIcnYtm2brf+17/X6zc/Pz/j+++9zdU0A+DtUJAEHS0tLkyQVK1YsV/2//fZbScox/+3555+XpBxzKUNCQvToo4/aPpcsWVLVqlXT77//bjrm612bW/nVV18pOzs7V8ccP35ccXFx6tmzpwICAmzttWrVUsuWLW33+VcDBgyw+/zoo4/q1KlTtu8wN7p27aqYmBglJSVp7dq1SkpKuuGwtnR1XqWb29W/BrOysnTq1CnbsP2OHTtyfU2r1apevXrlqm+rVq3073//W5MmTdJTTz0lDw8Pvfvuu7m+1jUTJkxQUlKS5syZc8u+X3zxhaKjo7V69WrNmzdP9957rzp16qRNmzbl+boA8FckkoCD+fj4SJLOnTuXq/5HjhyRm5ubqlSpYtceHBwsPz8/HTlyxK69XLlyOc7h7++vM2fOmIw4p2effVaNGjVS3759FRQUpM6dO2vJkiV/m1Rei7NatWo59lWvXl0nT57U+fPn7dqvvxd/f39JytO9tG3bVsWKFdNnn32mRYsW6cEHH8zxXV6TnZ2t6dOnq2rVqrJarSpRooRKliyp3bt36+zZs7m+5j333JOnB2v+97//KSAgQHFxcXrzzTcVGBiY62Ovady4sZo1a5aruZKNGzdWixYt1LJlS/Xs2VNr1qxRsWLFNHjw4DxfFwD+ikQScDAfHx+VLl1ae/fuzdNx1z/scjOFChW6YbthGKavcW3+3jWenp7asGGDfvjhBz333HPavXu3nn32WbVs2TJH33/in9zLNVarVU899ZQWLFigZcuW3bQaKUmvvfaaIiMj1bhxY3388cdatWqVoqOjdf/99+e68ipd/X7yYufOnUpJSZEk7dmzJ0/H/tX48eOVlJSU54qmt7e3GjRooB07duRI5gEgL0gkgTugffv2OnTokGJjY2/Zt3z58srOztaBAwfs2pOTk5Wammp7Avt28Pf3t3vC+Zrrq56S5ObmpubNm2vatGnav3+/Jk+erLVr12rdunU3PPe1OOPj43Ps+/XXX1WiRAl5eXn9sxu4ia5du2rnzp06d+7cDR9Qumbp0qVq1qyZPvjgA3Xu3FmtWrVSixYtcnwnuU3qc+P8+fPq1auXQkJC1L9/f02ZMkXbtm0zda4mTZqoadOm+u9//5vnJ7ivXLkiSUpPTzd1bQCQSCSBO2LUqFHy8vJS3759lZycnGP/oUOHNHPmTElXh2Yl5Xiyetq0aZKkdu3a3ba4KleurLNnz2r37t22tuPHj2vZsmV2/U6fPp3j2GvrD16/JNE1pUqVUu3atbVgwQK7xGzv3r1avXq17T4doVmzZnrllVc0a9Ys21I3N1KoUKEc1c7PP/9cf/75p13btYT3Rkl3Xo0ePVqJiYlasGCBpk2bpgoVKig8PPym3+OtXJsrmZfF7E+fPq1NmzYpODjY1LA6AFzDImLAHVC5cmUtXrxYzz77rKpXr273ZptNmzbp888/V8+ePSVJDzzwgMLDw/Xee+8pNTVVTZo00datW7VgwQJ17NjxpkvLmNG5c2eNHj1aTz75pIYMGaILFy5o9uzZuvfee+0eNpk0aZI2bNigdu3aqXz58kpJSdE777yjMmXK6JFHHrnp+d944w21adNGoaGh6tOnjzIyMvTWW2/J19dXEyZMuG33cT03NzeNHTv2lv3at2+vSZMmqVevXmrYsKH27NmjRYsWqVKlSnb9KleuLD8/P82ZM0fFihWTl5eXGjRooIoVK+YprrVr1+qdd97R+PHjbcsRzZs3T02bNtW4ceM0ZcqUPJ1PulqVbNKkidavX3/TPkuXLpW3t7cMw9CxY8f0wQcf6MyZM5ozZ85trbYCKICc+9A4ULD89ttvRr9+/YwKFSoY7u7uRrFixYxGjRoZb731lnHx4kVbv8uXLxsTJ040KlasaBQpUsQoW7asMWbMGLs+hnF1+Z927drluM71y87cbPkfwzCM1atXGzVq1DDc3d2NatWqGR9//HGO5X/WrFljdOjQwShdurTh7u5ulC5d2ujSpYvx22+/5bjG9Uvk/PDDD0ajRo0MT09Pw8fHx3j88ceN/fv32/W5dr3rlxe6tqRNQkLCTb9Tw7Bf/udmbrb8z/PPP2+UKlXK8PT0NBo1amTExsbecNmer776yggJCTEKFy5sd59NmjQx7r///hte86/nSUtLM8qXL2/UrVvXuHz5sl2/4cOHG25ubkZsbOzf3oP+svzPX61bt862tM+tlv/x8vIyQkNDjSVLlvzttQAgNyyGkYdZ7AAAAMD/xxxJAAAAmEIiCQAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKbkyzfbeDYY6ewQADjIyR/z/vYXAHcHL3fnvWnJs84gh507Y+csh53b2ahIAgAAwJR8WZEEAADIEwu1NTNIJAEAACzOG1a/m5F+AwAAwBQqkgAAAAxtm8K3BgAAAFOoSAIAADBH0hQqkgAAADCFiiQAAABzJE3hWwMAAIApVCQBAACYI2kKiSQAAABD26bwrQEAAMAUKpIAAAAMbZtCRRIAAACmUJEEAABgjqQpfGsAAAAwhYokAAAAcyRNoSIJAAAAU6hIAgAAMEfSFBJJAAAAhrZNIf0GAACAKVQkAQAAGNo2hW8NAAAAplCRBAAAoCJpCt8aAAAATKEiCQAA4MZT22ZQkQQAAIApVCQBAACYI2kKiSQAAAALkptC+g0AAABTqEgCAAAwtG0K3xoAAABMoSIJAADAHElTqEgCAADAFCqSAAAAzJE0hW8NAAAAplCRBAAAYI6kKSSSAAAADG2bwrcGAAAAU0gkAQAALBbHbf/A66+/LovFomHDhtnaLl68qIiICBUvXlze3t7q1KmTkpOT7Y5LTExUu3btVLRoUQUGBmrkyJG6cuWKXZ+YmBjVrVtXVqtVVapU0fz58/McH4kkAACAC9q2bZveffdd1apVy659+PDh+uabb/T5559r/fr1OnbsmJ566inb/qysLLVr106XLl3Spk2btGDBAs2fP18vv/yyrU9CQoLatWunZs2aKS4uTsOGDVPfvn21atWqPMVIIgkAAGBxc9xmQnp6urp166a5c+fK39/f1n727Fl98MEHmjZtmh577DHVq1dP8+bN06ZNm7R582ZJ0urVq7V//359/PHHql27ttq0aaNXXnlFb7/9ti5duiRJmjNnjipWrKipU6eqevXqGjRokJ5++mlNnz49T3GSSAIAADhQZmam0tLS7LbMzMy/PSYiIkLt2rVTixYt7Nq3b9+uy5cv27Xfd999KleunGJjYyVJsbGxqlmzpoKCgmx9wsLClJaWpn379tn6XH/usLAw2zlyi0QSAADAgXMko6Ki5Ovra7dFRUXdNJRPP/1UO3bsuGGfpKQkubu7y8/Pz649KChISUlJtj5/TSKv7b+27+/6pKWlKSMjI9dfG8v/AAAAONCYMWMUGRlp12a1Wm/Y9+jRoxo6dKiio6Pl4eFxJ8L7R6hIAgAAOHCOpNVqlY+Pj912s0Ry+/btSklJUd26dVW4cGEVLlxY69ev15tvvqnChQsrKChIly5dUmpqqt1xycnJCg4OliQFBwfneIr72udb9fHx8ZGnp2euvzYSSQAAABd52KZ58+bas2eP4uLibFv9+vXVrVs3289FihTRmjVrbMfEx8crMTFRoaGhkqTQ0FDt2bNHKSkptj7R0dHy8fFRSEiIrc9fz3Gtz7Vz5BZD2wAAAC6iWLFiqlGjhl2bl5eXihcvbmvv06ePIiMjFRAQIB8fHw0ePFihoaF6+OGHJUmtWrVSSEiInnvuOU2ZMkVJSUkaO3asIiIibJXQAQMGaNasWRo1apR69+6ttWvXasmSJVq5cmWe4iWRBAAAuIvetT19+nS5ubmpU6dOyszMVFhYmN555x3b/kKFCmnFihUaOHCgQkND5eXlpfDwcE2aNMnWp2LFilq5cqWGDx+umTNnqkyZMnr//fcVFhaWp1gshmEYt+3OXIRng5HODgGAg5z8cYqzQwDgIF7uzkvmPJ+Y7bBzZ3w90GHndjYqkgAAACYXDi/o+NYAAABgChVJAACAu2iOpCuhIgkAAABTqEgCAAAwR9IUEkkAAACGtk0h/QYAAIApVCQBAECBZ6EiaQoVSQAAAJhCRRIAABR4VCTNoSIJAAAAU6hIAgAAUJA0hYokAAAATKEiCQAACjzmSJpDIgkAAAo8EklzGNoGAACAKVQkAQBAgUdF0hwqkgAAADCFiiQAACjwqEiaQ0USAAAAplCRBAAAoCBpChVJAAAAmEJFEgAAFHjMkTSHiiQAAABMoSIJAAAKPCqS5pBIAgCAAo9E0hyGtgEAAGAKFUkAAFDgUZE0h4okAAAATKEiCQAAQEHSFCqSAAAAMIWKJAAAKPCYI2kOFUkAAACYQkUSAAAUeFQkzSGRBAAABR6JpDkMbQMAAMAUKpIAAAAUJE2hIgkAAABTqEgCAIACjzmS5lCRBAAAgCkuk0j++OOP6t69u0JDQ/Xnn39KkhYuXKiNGzc6OTIAAJDfWSwWh235mUskkl988YXCwsLk6empnTt3KjMzU5J09uxZvfbaa06ODgAAADfiEonkq6++qjlz5mju3LkqUqSIrb1Ro0basWOHEyMDAAAFARVJc1ziYZv4+Hg1btw4R7uvr69SU1PvfEAAAKBAye8Jn6O4REUyODhYBw8ezNG+ceNGVapUyQkRAQAA4FZcIpHs16+fhg4dqi1btshisejYsWNatGiRRowYoYEDBzo7PAAAkN9ZHLjlYy4xtP3CCy8oOztbzZs314ULF9S4cWNZrVaNGDFCgwcPdnZ4AAAAuAGXSCQtFoteeukljRw5UgcPHlR6erpCQkLk7e3t7NAAAEABwBxJc1xiaPvjjz/WhQsX5O7urpCQED300EMkkQAAAC7OJRLJ4cOHKzAwUF27dtW3336rrKwsZ4cEAAAKEJb/McclEsnjx4/r008/lcVi0TPPPKNSpUopIiJCmzZtcnZoAAAAuAmXSCQLFy6s9u3ba9GiRUpJSdH06dN1+PBhNWvWTJUrV3Z2eAAAIJ9zlYrk7NmzVatWLfn4+MjHx0ehoaH67rvvbPubNm2a4/wDBgywO0diYqLatWunokWLKjAwUCNHjtSVK1fs+sTExKhu3bqyWq2qUqWK5s+fb+p7c4mHbf6qaNGiCgsL05kzZ3TkyBH98ssvzg4JAADkdy4yAl2mTBm9/vrrqlq1qgzD0IIFC9ShQwft3LlT999/v6SryyZOmjTJdkzRokVtP2dlZaldu3YKDg7Wpk2bdPz4cfXo0UNFihSxvXY6ISFB7dq104ABA7Ro0SKtWbNGffv2ValSpRQWFpaneF0mkbxw4YKWLVtmu6GyZcuqS5cuWrp0qbNDAwAAuCMef/xxu8+TJ0/W7NmztXnzZlsiWbRoUQUHB9/w+NWrV2v//v364YcfFBQUpNq1a+uVV17R6NGjNWHCBLm7u2vOnDmqWLGipk6dKkmqXr26Nm7cqOnTp+c5kXSJoe3OnTsrMDBQw4cPV6VKlRQTE6ODBw/qlVde0X333efs8AAAQD7nyKHtzMxMpaWl2W2ZmZm3jCkrK0uffvqpzp8/r9DQUFv7okWLVKJECdWoUUNjxozRhQsXbPtiY2NVs2ZNBQUF2drCwsKUlpamffv22fq0aNHC7lphYWGKjY3N8/fmEhXJQoUKacmSJQoLC1OhQoWcHQ4AAMBtExUVpYkTJ9q1jR8/XhMmTLhh/z179ig0NFQXL16Ut7e3li1bppCQEElS165dVb58eZUuXVq7d+/W6NGjFR8fry+//FKSlJSUZJdESrJ9TkpK+ts+aWlpysjIkKenZ67vzSUSyUWLFjk7BAAAUIA5cpmeMWPGKDIy0q7NarXetH+1atUUFxens2fPaunSpQoPD9f69esVEhKi/v372/rVrFlTpUqVUvPmzXXo0CGnPKDstETyzTffVP/+/eXh4aE333zzb/sOGTLkDkUFAABwe1mt1r9NHK/n7u6uKlWqSJLq1aunbdu2aebMmXr33Xdz9G3QoIEk6eDBg6pcubKCg4O1detWuz7JycmSZJtXGRwcbGv7ax8fH588VSMlJyaS06dPV7du3eTh4aHp06fftJ/FYiGRLEBG9GimVyLaatanP2rk9K/l7+Opcf1aqXmDe1U2yF8nU9P1zfp9mvjuKqWdv2h3bPd29TWkS2NVLVdCaecz9eXa3Rr+xjJJ0qN1K2lwl8aqH1JWPl4eOnj0pGZ8HKNPV+10xm0CBVa7sMd0/NixHO3/erar/jN4iOa8/ZY2x/6kpOPH5e8foKaPNdfAQUNVrFgxW98pUa8qbucOHTp4QBUrVdanS5ffwTtAfuXKC4dnZ2ffdE5lXFycJKlUqVKSpNDQUE2ePFkpKSkKDAyUJEVHR8vHx8c2PB4aGqpvv/3W7jzR0dF28zBzy2mJZEJCwg1/RsFVr3oZ9XnyYe0+8H//yJQq4aNSJX015s0V+iUhReWC/fTWC51UqqSPuo5ZaOs3pEtjDe3aWC++tUJb9x2Vl6e7ypfyt+1/uGYF7T14XNM+Wqfk0+lq+0h1vT++s86mX9R3P7HEFHCnfPzJUmVl/9/byw4dOKCB/XurZViYTqSk6MSJFA17fpQqVa6i48eO6bVXxuvEiRS9Mc1+5KrDk520d89uHfgt/k7fAuBQY8aMUZs2bVSuXDmdO3dOixcvVkxMjFatWqVDhw5p8eLFatu2rYoXL67du3dr+PDhaty4sWrVqiVJatWqlUJCQvTcc89pypQpSkpK0tixYxUREWGrig4YMECzZs3SqFGj1Lt3b61du1ZLlizRypUr8xyvS8yRnDRpkkaMGGG3DpIkZWRk6I033tDLL7/spMhwp3h5umvepK76z2tL9UKv5rb2/b8nq8sLH9k+J/x5ShNmf68PJ3ZRoUJuysrKll8xT40fEKZOz89TzM8HbX33Hjxu+/mNBWvtrvf2ZxvVvMG96tCsBokkcAf5BwTYfZ73wVyVKVtO9eo/JIvFov9Nf8u2r2zZcooYPFxjx1xdTLlw4av/ZI0aM1aSdObMaRJJ3DauUpFMSUlRjx49dPz4cfn6+qpWrVpatWqVWrZsqaNHj+qHH37QjBkzdP78eZUtW1adOnXS2LFjbccXKlRIK1as0MCBAxUaGiovLy+Fh4fbrTtZsWJFrVy5UsOHD9fMmTNVpkwZvf/++3le+kdykURy4sSJGjBgQI5E8sKFC5o4cSKJZAEwY+ST+v6nX7Ru2wG7RPJGfLw9lHb+orKysiVJzR+qKjeLRaVL+mrnpyNUzMuqzbuP6IWZ3+iPlLM3PY+vt4fiD6fc1vsAkHuXL1/Sdyu+VrcePW/6j3h6+jl5eXvbkkjAYVwjj9QHH3xw031ly5bV+vXrb3mO8uXL5xi6vl7Tpk21c+c/n97lEutIGoZxw79Edu3apYDr/uv1ejdam8nIvvK3x8C1/KvlA6pd7R6Ne+e7W/Yt7ltUY3q30IfLt9jaKt5TXG5uFo3q+ZhGTv9aXccslL9PUa14q7+KFL7xclKdmtdSvepl9dE3227bfQDIm3Vr1ujcuXN6osOTN9x/5swZzX13tp56+pk7HBmA3HJqIunv76+AgABZLBbde++9CggIsG2+vr5q2bKlnnnm7/8CiYqKkq+vr9125diWvz0GrqNMoK/eiOygXuM/Uealv/8PgGJeVi2b1ke/JCTr1bmrbe0Wi0XuRQrr+Wlf6Yctv2nr3kSFj1ukKmVLqEm9nEshNK5XWe+Oe1b/eW2pfklIzrEfwJ2xfNlSNXzkUZUMDMqxLz09XUMj/q1KlSrr3wMHOSE6FDSu8q7tu41TxwpmzJghwzDUu3dvTZw4Ub6+vrZ97u7uqlChwi2fILrR2kyBzcc7JF7cfnXuK6OggGKKXTDU1la4cCE9UqeiBjzdUL6PjlF2tiHvolZ9PaOvzl3I1LOjF+jK/x/WlqSkU2mSpF//khSeTD2vk2fPq2ywn931HqlTSV/8r5dGzfhai7/b7tibA3BTx479qa2bY+3mRF5z/ny6Bg3oq6JFvTR15iwVKVLECRECyA2nJpLh4eGSrk76bNiwoam/LG60NpPFjbk0d4t1Px9UvS7/s2t7b9yzij+SoqkfrVN2tqFiXlZ9M7OfMi9d0dMj5uWoXMbuOixJqlqupP78/3Mi/X08VcLXS4lJqbZ+j9atpC+n9tbYt7+1GxoHcOd9vfxLBQQU1yONm9i1p6enK+LffeTu7q7pb72Tp7X3gH8iv1cOHcVpGVdaWpp8fHwkSXXq1FFGRoYyMjJu2PdaP+Q/6Rcytf93++Hl8xmXdPrsBe3/PVnFvKxa8WY/eVrd1Wv8J/Lx8pCPl4ck6URqurKzDR08elLfrN+r/0V20KCopUo7f1GT/tNW8UdStP7/P8XduF5lfTm1t97+7EctX7tHQQFX16S7dOWKzqTd+P93ABwjOztbXy9fpvZPdLR7iCY9PV3/+XcfXczI0Kuvv6Hz59N1/ny6JMnfP8D2Ct3ExCPKuHBBp06eVGbmRcX/enXlhUqVK6tIEfc7f0NAAea0RNLf31/Hjx9XYGCg/Pz8bvhfAtcewsnKyrrBGVAQ1K52jx6qUV6StP/LF+z2Vev4mhKPn5Ek9Zn4qaYMe0JfTuutbMPQxh2/q8PQ921D4N3b1peXp7tG9WyuUT3/76nwDdsPKew/c+7Q3QCQpC2bNynp+DF1ePIpu/Zff9mnvbt3SZI6tG1lt2/F9z+o9D1lJEmvjB+r7T//34NyXf71ZI4+QF5RkDTHYhiG4YwLr1+/Xo0aNVLhwoVv+Sh7kyZN/nb/9TwbjPwnoQFwYSd/nOLsEAA4iJe787K5KiNuvXKIWQf/18Zh53Y2p1Uk/5oc5jVRBAAAuJ2YI2mOS6wj+f3332vjxo22z2+//bZq166trl276syZM06MDAAAFAQWi+O2/MwlEsmRI0cqLe3qEi579uxRZGSk2rZtq4SEhBxL+wAAAMA1uMQ6OQkJCQoJCZEkffHFF3r88cf12muvaceOHWrbtq2TowMAAPkdQ9vmuERF0t3dXRcuXJAk/fDDD2rV6urTegEBAbZKJQAAAFyLS1QkH3nkEUVGRqpRo0baunWrPvvsM0nSb7/9pjJlWMoBAAA4FgVJc1yiIjlr1iwVLlxYS5cu1ezZs3XPPfdIkr777ju1bt3aydEBAADgRlyiIlmuXDmtWLEiR/v06dOdEA0AACho3NwoSZrhEomkJGVlZWn58uX65Zerr7q6//779cQTT9heiQUAAADX4hKJ5MGDB9W2bVv9+eefqlatmiQpKipKZcuW1cqVK1W5cmUnRwgAAPIz5kia4xJzJIcMGaLKlSvr6NGj2rFjh3bs2KHExERVrFhRQ4YMcXZ4AAAgn7NYLA7b8jOXqEiuX79emzdvVkBAgK2tePHiev3119WoUSMnRgYAAICbcYlE0mq16ty5czna09PT5e7u7oSIAABAQZLPC4cO4xJD2+3bt1f//v21ZcsWGYYhwzC0efNmDRgwQE888YSzwwMAAMANuEQi+eabb6py5coKDQ2Vh4eHPDw81LBhQ1WpUkUzZ850dngAACCfY46kOS4xtO3n56evvvpKBw8e1P79+yVJISEhqlKlipMjAwAAwM24RCIpSR988IGmT5+uAwcOSJKqVq2qYcOGqW/fvk6ODAAA5Hf5vXLoKC6RSL788suaNm2aBg8erNDQUElSbGyshg8frsTERE2aNMnJEQIAAOB6LpFIzp49W3PnzlWXLl1sbU888YRq1aqlwYMHk0gCAACHoiBpjkskkpcvX1b9+vVztNerV09XrlxxQkQAAKAgYWjbHJd4avu5557T7Nmzc7S/99576tatmxMiAgAAwK24REVSuvqwzerVq/Xwww9LkrZs2aLExET16NFDkZGRtn7Tpk1zVogAACCfoiBpjkskknv37lXdunUlSYcOHZIklShRQiVKlNDevXtt/Sg7AwAAuA6XSCTXrVvn7BAAAEABRrHKHJeYIwkAAIC7j0tUJAEAAJyJgqQ5VCQBAABgChVJAABQ4DFH0hwqkgAAADCFiiQAACjwKEiaQyIJAAAKPIa2zWFoGwAAAKZQkQQAAAUeBUlzqEgCAADAFCqSAACgwGOOpDlUJAEAAGAKFUkAAFDgUZA0h4okAAAATKEiCQAACjzmSJpDIgkAAAo88khzGNoGAACAKVQkAQBAgcfQtjlUJAEAAGAKFUkAAFDgUZE0h4okAAAATCGRBAAABZ7F4rgtL2bPnq1atWrJx8dHPj4+Cg0N1XfffWfbf/HiRUVERKh48eLy9vZWp06dlJycbHeOxMREtWvXTkWLFlVgYKBGjhypK1eu2PWJiYlR3bp1ZbVaVaVKFc2fP9/U90YiCQAA4CLKlCmj119/Xdu3b9fPP/+sxx57TB06dNC+ffskScOHD9c333yjzz//XOvXr9exY8f01FNP2Y7PyspSu3btdOnSJW3atEkLFizQ/Pnz9fLLL9v6JCQkqF27dmrWrJni4uI0bNgw9e3bV6tWrcpzvBbDMIx/ftuuxbPBSGeHAMBBTv44xdkhAHAQL3fnzVNsOmOTw869amA9ZWZm2rVZrVZZrdZcHR8QEKA33nhDTz/9tEqWLKnFixfr6aefliT9+uuvql69umJjY/Xwww/ru+++U/v27XXs2DEFBQVJkubMmaPRo0frxIkTcnd31+jRo7Vy5Urt3bvXdo3OnTsrNTVV33//fZ7ujYokAAAo8Bw5tB0VFSVfX1+7LSoq6pYxZWVl6dNPP9X58+cVGhqq7du36/Lly2rRooWtz3333ady5copNjZWkhQbG6uaNWvakkhJCgsLU1pamq2qGRsba3eOa32unSMveGobAADAgcaMGaPIyEi7tr+rRu7Zs0ehoaG6ePGivL29tWzZMoWEhCguLk7u7u7y8/Oz6x8UFKSkpCRJUlJSkl0SeW3/tX1/1yctLU0ZGRny9PTM9b2RSAIAgALPkcv/5GUYW5KqVaumuLg4nT17VkuXLlV4eLjWr1/vsPj+CRJJAAAAF+Lu7q4qVapIkurVq6dt27Zp5syZevbZZ3Xp0iWlpqbaVSWTk5MVHBwsSQoODtbWrVvtznftqe6/9rn+Se/k5GT5+PjkqRopMUcSAADAZZb/uZHs7GxlZmaqXr16KlKkiNasWWPbFx8fr8TERIWGhkqSQkNDtWfPHqWkpNj6REdHy8fHRyEhIbY+fz3HtT7XzpEXVCQBAABcxJgxY9SmTRuVK1dO586d0+LFixUTE6NVq1bJ19dXffr0UWRkpAICAuTj46PBgwcrNDRUDz/8sCSpVatWCgkJ0XPPPacpU6YoKSlJY8eOVUREhG14fcCAAZo1a5ZGjRql3r17a+3atVqyZIlWrlyZ53hJJAEAQIHn5iKvSExJSVGPHj10/Phx+fr6qlatWlq1apVatmwpSZo+fbrc3NzUqVMnZWZmKiwsTO+8847t+EKFCmnFihUaOHCgQkND5eXlpfDwcE2aNMnWp2LFilq5cqWGDx+umTNnqkyZMnr//fcVFhaW53hZRxLAXYV1JIH8y5nrSLactdlh544e9LDDzu1sVCQBAECB5yIFybsOiSQAACjwHLn8T37GU9sAAAAwhYokAAAo8NwoSJpCRRIAAACmUJEEAAAFHnMkzaEiCQAAAFOoSAIAgAKPgqQ5VCQBAABgChVJAABQ4FlESdIMEkkAAFDgsfyPOQxtAwAAwBQqkgAAoMBj+R9zqEgCAADAFCqSAACgwKMgaQ4VSQAAAJhCRRIAABR4bpQkTclzRXLBggVauXKl7fOoUaPk5+enhg0b6siRI7c1OAAAALiuPCeSr732mjw9PSVJsbGxevvttzVlyhSVKFFCw4cPv+0BAgAAOJrF4rgtP8vz0PbRo0dVpUoVSdLy5cvVqVMn9e/fX40aNVLTpk1vd3wAAAAOx/I/5uS5Iunt7a1Tp05JklavXq2WLVtKkjw8PJSRkXF7owMAAIDLynNFsmXLlurbt6/q1Kmj3377TW3btpUk7du3TxUqVLjd8QEAADgcBUlz8lyRfPvttxUaGqoTJ07oiy++UPHixSVJ27dvV5cuXW57gAAAAHBNea5I+vn5adasWTnaJ06ceFsCAgAAuNNY/secXCWSu3fvzvUJa9WqZToYAAAA3D1ylUjWrl1bFotFhmHccP+1fRaLRVlZWbc1QAAAAEejHmlOrhLJhIQER8cBAACAu0yuEsny5cs7Og4AAACnYR1Jc/L81LYkLVy4UI0aNVLp0qVtr0WcMWOGvvrqq9saHAAAwJ3gZnHclp/lOZGcPXu2IiMj1bZtW6WmptrmRPr5+WnGjBm3Oz4AAAC4qDwnkm+99Zbmzp2rl156SYUKFbK1169fX3v27LmtwQEAANwJFovFYVt+ludEMiEhQXXq1MnRbrVadf78+dsSFAAAAFxfnhPJihUrKi4uLkf7999/r+rVq9+OmAAAAO4oi8VxW36W5zfbREZGKiIiQhcvXpRhGNq6das++eQTRUVF6f3333dEjAAAAHBBeU4k+/btK09PT40dO1YXLlxQ165dVbp0ac2cOVOdO3d2RIwAAAAOld/nMjpKnhNJSerWrZu6deumCxcuKD09XYGBgbc7LgAAALg4U4mkJKWkpCg+Pl7S1Sy+ZMmSty0oAACAOym/r/foKHl+2ObcuXN67rnnVLp0aTVp0kRNmjRR6dKl1b17d509e9YRMQIAADgUy/+Yk+dEsm/fvtqyZYtWrlyp1NRUpaamasWKFfr555/173//2xExAgAAwAXleWh7xYoVWrVqlR555BFbW1hYmObOnavWrVvf1uAAAADuhPxdN3ScPFckixcvLl9f3xztvr6+8vf3vy1BAQAAwPXlOZEcO3asIiMjlZSUZGtLSkrSyJEjNW7cuNsaHAAAwJ3gZrE4bMvPcjW0XadOHbvJogcOHFC5cuVUrlw5SVJiYqKsVqtOnDjBPEkAAIACIleJZMeOHR0cBgAAgPPk88Khw+QqkRw/fryj4wAAAMBdxvSC5AAAAPlFfl/v0VHynEhmZWVp+vTpWrJkiRITE3Xp0iW7/adPn75twQEAAMB15fmp7YkTJ2ratGl69tlndfbsWUVGRuqpp56Sm5ubJkyY4IAQAQAAHMticdyWn+U5kVy0aJHmzp2r559/XoULF1aXLl30/vvv6+WXX9bmzZsdESMAAIBDsfyPOXlOJJOSklSzZk1Jkre3t+392u3bt9fKlStvb3QAAABwWXlOJMuUKaPjx49LkipXrqzVq1dLkrZt2yar1Xp7owMAALgDGNo2J8+J5JNPPqk1a9ZIkgYPHqxx48apatWq6tGjh3r37n3bAwQAACgooqKi9OCDD6pYsWIKDAxUx44dFR8fb9enadOmslgsdtuAAQPs+iQmJqpdu3YqWrSoAgMDNXLkSF25csWuT0xMjOrWrSur1aoqVapo/vz5eY43z09tv/7667afn332WZUvX16bNm1S1apV9fjjj+c5AAAAAGdzleV/1q9fr4iICD344IO6cuWKXnzxRbVq1Ur79++Xl5eXrV+/fv00adIk2+eiRYvafs7KylK7du0UHBysTZs26fjx4+rRo4eKFCmi1157TZKUkJCgdu3aacCAAVq0aJHWrFmjvn37qlSpUgoLC8t1vBbDMIzbcN9KSUnR+++/rxdffPF2nO4f8Www0tkhAHCQkz9OcXYIABzEy915yVzEsl8cdu63n6xu+tgTJ04oMDBQ69evV+PGjSVdrUjWrl1bM2bMuOEx3333ndq3b69jx44pKChIkjRnzhyNHj1aJ06ckLu7u0aPHq2VK1dq7969tuM6d+6s1NRUff/997mO77YtSH78+HGNGzfOJRLJMz+94ewQADiI/4ODnB0CAAfJ2DnLadfO81y/PMjMzFRmZqZdm9VqzdWzJdceag4ICLBrX7RokT7++GMFBwfr8ccf17hx42xVydjYWNWsWdOWREpSWFiYBg4cqH379qlOnTqKjY1VixYt7M4ZFhamYcOG5eneHPm9AQAAFHhRUVHy9fW126Kiom55XHZ2toYNG6ZGjRqpRo0atvauXbvq448/1rp16zRmzBgtXLhQ3bt3t+1PSkqySyIl2T4nJSX9bZ+0tDRlZGTk+t54RSIAACjwHDlHcsyYMYqMjLRry001MiIiQnv37tXGjRvt2vv372/7uWbNmipVqpSaN2+uQ4cOqXLlyrcn6FwikQQAAAWemwOnZ+Z2GPuvBg0apBUrVmjDhg0qU6bM3/Zt0KCBJOngwYOqXLmygoODtXXrVrs+ycnJkqTg4GDb/15r+2sfHx8feXp65jrOXCeS12fS1ztx4kSuLwoAAICcDMPQ4MGDtWzZMsXExKhixYq3PCYuLk6SVKpUKUlSaGioJk+erJSUFAUGBkqSoqOj5ePjo5CQEFufb7/91u480dHRCg0NzVO8uU4kd+7cecs+154mAgAAuJs4siKZFxEREVq8eLG++uorFStWzDan0dfXV56enjp06JAWL16stm3bqnjx4tq9e7eGDx+uxo0bq1atWpKkVq1aKSQkRM8995ymTJmipKQkjR07VhEREbbK6IABAzRr1iyNGjVKvXv31tq1a7VkyZI8v6Xwti3/40ouXrl1HwB3J57aBvIvZz61Hfn1rw4797Qn7st135vN1Zw3b5569uypo0ePqnv37tq7d6/Onz+vsmXL6sknn9TYsWPl4+Nj63/kyBENHDhQMTEx8vLyUnh4uF5//XUVLvx/NcSYmBgNHz5c+/fvV5kyZTRu3Dj17NkzT/dGIgngrkIiCeRfzkwkn/8m/tadTJr6eDWHndvZWP4HAAAApvDUNgAAKPBcZY7k3YaKJAAAAEyhIgkAAAo8B65Hnq+Zqkj++OOP6t69u0JDQ/Xnn39KkhYuXJhj5XUAAIC7gZvF4rAtP8tzIvnFF18oLCxMnp6e2rlzp+0l5GfPntVrr7122wMEAACAa8pzIvnqq69qzpw5mjt3rooUKWJrb9SokXbs2HFbgwMAALgT3By45Wd5vr/4+PgbvsHG19dXqamptyMmAAAA3AXynEgGBwfr4MGDOdo3btyoSpUq3ZagAAAA7iSLxXFbfpbnRLJfv34aOnSotmzZIovFomPHjmnRokUaMWKEBg4c6IgYAQAA4ILyvPzPCy+8oOzsbDVv3lwXLlxQ48aNZbVaNWLECA0ePNgRMQIAADhUfn+62lHynEhaLBa99NJLGjlypA4ePKj09HSFhITI29vbEfEBAADARZlekNzd3V0hISG3MxYAAACnoCBpTp4TyWbNmsnyN9/22rVr/1FAAAAAdxrv2jYnz4lk7dq17T5fvnxZcXFx2rt3r8LDw29XXAAAAHBxeU4kp0+ffsP2CRMmKD09/R8HBAAAcKfxsI05t23B9e7du+vDDz+8XacDAACAizP9sM31YmNj5eHhcbtOBwAAcMdQkDQnz4nkU089ZffZMAwdP35cP//8s8aNG3fbAgMAAIBry3Mi6evra/fZzc1N1apV06RJk9SqVavbFhgAAMCdwlPb5uQpkczKylKvXr1Us2ZN+fv7OyomAAAA3AXy9LBNoUKF1KpVK6WmpjooHAAAgDvP4sA/+Vmen9quUaOGfv/9d0fEAgAA4BRuFsdt+VmeE8lXX31VI0aM0IoVK3T8+HGlpaXZbQAAACgYcj1HctKkSXr++efVtm1bSdITTzxh96pEwzBksViUlZV1+6MEAABwoPxeOXSUXCeSEydO1IABA7Ru3TpHxgMAAIC7RK4TScMwJElNmjRxWDAAAADOYGFFclPyNEeSLxkAAADX5GkdyXvvvfeWyeTp06f/UUAAAAB3GnMkzclTIjlx4sQcb7YBAABAwZSnRLJz584KDAx0VCwAAABOwew9c3KdSDI/EgAA5Fdu5Dmm5Pphm2tPbQMAAABSHiqS2dnZjowDAADAaXjYxpw8vyIRAAAAkPL4sA0AAEB+xBRJc6hIAgAAwBQqkgAAoMBzEyVJM6hIAgAAwBQqkgAAoMBjjqQ5JJIAAKDAY/kfcxjaBgAAgClUJAEAQIHHKxLNoSIJAAAAU6hIAgCAAo+CpDlUJAEAAGAKFUkAAFDgMUfSHCqSAAAAMIWKJAAAKPAoSJpDIgkAAAo8hmjN4XsDAACAKSSSAACgwLNYLA7b8iIqKkoPPvigihUrpsDAQHXs2FHx8fF2fS5evKiIiAgVL15c3t7e6tSpk5KTk+36JCYmql27dipatKgCAwM1cuRIXblyxa5PTEyM6tatK6vVqipVqmj+/Pl5/t5IJAEAAFzE+vXrFRERoc2bNys6OlqXL19Wq1atdP78eVuf4cOH65tvvtHnn3+u9evX69ixY3rqqads+7OystSuXTtdunRJmzZt0oIFCzR//ny9/PLLtj4JCQlq166dmjVrpri4OA0bNkx9+/bVqlWr8hSvxTAM45/ftmu5eOXWfQDcnfwfHOTsEAA4SMbOWU679kc/H3XYuXvUL2v62BMnTigwMFDr169X48aNdfbsWZUsWVKLFy/W008/LUn69ddfVb16dcXGxurhhx/Wd999p/bt2+vYsWMKCgqSJM2ZM0ejR4/WiRMn5O7urtGjR2vlypXau3ev7VqdO3dWamqqvv/++1zHR0USAADAgTIzM5WWlma3ZWZm5urYs2fPSpICAgIkSdu3b9fly5fVokULW5/77rtP5cqVU2xsrCQpNjZWNWvWtCWRkhQWFqa0tDTt27fP1uev57jW59o5cotEEgAAFHhuFovDtqioKPn6+tptUVFRt4wpOztbw4YNU6NGjVSjRg1JUlJSktzd3eXn52fXNygoSElJSbY+f00ir+2/tu/v+qSlpSkjIyPX3xvL/wAAADjQmDFjFBkZaddmtVpveVxERIT27t2rjRs3Oiq0f4xEEgAAFHiOXI/carXmKnH8q0GDBmnFihXasGGDypQpY2sPDg7WpUuXlJqaaleVTE5OVnBwsK3P1q1b7c537anuv/a5/knv5ORk+fj4yNPTM9dxMrQNAAAKPIvFcVteGIahQYMGadmyZVq7dq0qVqxot79evXoqUqSI1qxZY2uLj49XYmKiQkNDJUmhoaHas2ePUlJSbH2io6Pl4+OjkJAQW5+/nuNan2vnyC0qkgAAAC4iIiJCixcv1ldffaVixYrZ5jT6+vrK09NTvr6+6tOnjyIjIxUQECAfHx8NHjxYoaGhevjhhyVJrVq1UkhIiJ577jlNmTJFSUlJGjt2rCIiImyV0QEDBmjWrFkaNWqUevfurbVr12rJkiVauXJlnuJl+R8AdxWW/wHyL2cu//PJzj8ddu4ude7Jdd+bLWA+b9489ezZU9LVBcmff/55ffLJJ8rMzFRYWJjeeecd27C1JB05ckQDBw5UTEyMvLy8FB4ertdff12FC/9fDTEmJkbDhw/X/v37VaZMGY0bN852jVzHSyIJ4G5CIgnkXySSdx+GtgEAQIHHQyPm8L0BAADAFCqSAACgwLvZ3ET8PSqSAAAAMIWKJAAAKPCoR5pDRRIAAACmUJEEAAAFHnMkzSGRBAAABR5DtObwvQEAAMAUKpIAAKDAY2jbHCqSAAAAMIWKJAAAKPCoR5pDRRIAAACmUJEEAAAFHlMkzaEiCQAAAFOoSAIAgALPjVmSppBIAgCAAo+hbXMY2gYAAIApLpVIXrp0SfHx8bpy5YqzQwEAAAWIxYF/8jOXSCQvXLigPn36qGjRorr//vuVmJgoSRo8eLBef/11J0cHAACAG3GJRHLMmDHatWuXYmJi5OHhYWtv0aKFPvvsMydGBgAACgKLxXFbfuYSD9ssX75cn332mR5++GG7d13ef//9OnTokBMjAwAAwM24RCJ54sQJBQYG5mg/f/48L1EHAAAOx/I/5rjE0Hb9+vW1cuVK2+dryeP777+v0NBQZ4UFAACAv+ESFcnXXntNbdq00f79+3XlyhXNnDlT+/fv16ZNm7R+/XpnhwcAAPI5BkDNcYmK5COPPKK4uDhduXJFNWvW1OrVqxUYGKjY2FjVq1fP2eEBAIB8jodtzHGJiqQkVa5cWXPnznV2GAAAAMgll6hItmjRQvPnz1daWpqzQwEAAAUQC5Kb4xKJ5P33368xY8YoODhY//rXv/TVV1/p8uXLzg4LAAAAf8MlEsmZM2fqzz//1PLly+Xl5aUePXooKChI/fv352EbAADgcG4Wx235mUskkpLk5uamVq1aaf78+UpOTta7776rrVu36rHHHnN2aAAAALgBl3nY5pqkpCR9+umn+vjjj7V792499NBDzg4JAADkc/l9LqOjuERFMi0tTfPmzVPLli1VtmxZzZ49W0888YQOHDigzZs3Ozs8AAAA3IBLVCSDgoLk7++vZ599VlFRUapfv76zQwIAAAVIfl/v0VFcIpH8+uuv1bx5c7m5uUSBFAAAFDAMbZvjEolky5YtnR0CAAAA8shpiWTdunW1Zs0a+fv7q06dOrL8TU15x44ddzAyAABQ0OT3ZXocxWmJZIcOHWS1Wm0//10iCQAAANdjMQzDcHYQt9vFK86OAICj+D84yNkhAHCQjJ2znHbtH38747BzP3qvv8PO7Wwu8XRLpUqVdOrUqRztqampqlSpkhMiAgAAwK24xMM2hw8fVlZWVo72zMxM/fHHH06ICM6WnJysGdPe0E8//qiLFzNUtlx5TXr1Nd1fo6YkadyLL+jrr5bZHdOw0SOa/d4HkqRtW7eob68eNzz3ok8/V42atRx7AwByGNGrpV4Z0kGzFq3TyP99IUl666XOeqxBNZUq6av0jExt3pWgsTO/0m+Hk+2O7f54Aw3p/piqlg9U2vmL+jJ6p4a/vsS2v0bV0prxwjOqd395nTyTrtmfrte0BT/c0fvD3Y0ZduY4NZH8+uuvbT+vWrVKvr6+ts9ZWVlas2aNKlas6IzQ4ERpZ8+qZ/cuqv9QA709Z678A/yVeOSIfHx87fo1euRRTXo1yvbZ3d3d9nPt2nW0JmajXf+335qpLVtibckogDunXkg59enUSLt/sy8O7PzlqD79bpuOHj+jAN+iemlAO614J0L3tR+v7OyrM6+GdH9MQ597TC9OX66tew/Ly9Nd5UsXt52jmJeHvnlnkNZt+VWDJ3+qGlXv0Zzx3ZR6LkMffvnTHb1PoKBxaiLZsWNHSZLFYlF4eLjdviJFiqhChQqaOnWqEyKDM334wVwFBQfrlcn/lySWKVM2Rz93d3eVKFnyhucoct2+y5cva926NerStTsPdgF3mJenu+a91lP/eeUTvdC3td2+vyZ6icdPa+Lb32jbkhdVvnRxJfxxUn7FPDX+P+3VadgcxWz9zdZ374Fjtp87t60v9yKF9O8Ji3T5SpZ++T1JtardoyHdm5FIItf4l8Ecp86RzM7OVnZ2tsqVK6eUlBTb5+zsbGVmZio+Pl7t27d3ZohwgvXr1ur++2toxPAhavpoqJ7p1FFffL4kR7+ft21V00dD9US7ML06abxSU28+UXr9urU6m5qqjk92cmToAG5gxphn9f2Pe7VuS/zf9ivq4a4eTzyshD9O6o+kq7/PzR++T25uFpUO9NPOL8bq4Pev6OP/9laZID/bcQ1qVdRPOw7q8pX/myIVvekXVasYLL9ing65J+Q/bhaLw7b8zCXmSCYkJJg+NjMzU5mZmXZtRiGrbWkh3H3++OOolnz2iZ4L76U+/Qdo3549+m/UqypSpIie6PikJKnhI4+qeYuWuqdMGR09elRvzZim//y7nxYu/kyFChXKcc5lXy5Vw0aPKCg4+E7fDlCg/SusnmrfV1aPdJ9y0z79//WoJg/rKO+iVsUnJKndwFm2pLBimRJyc7NoVO9WGvHGF0pLz9D4iPZaMXuQHnwmSpevZCmouI8O/2n/wGbK6XOSpKASPko9l+G4GwQKOJdIJCXp/PnzWr9+vRITE3Xp0iW7fUOGDLnpcVFRUZo4caJd20vjxmvsyxMcESbugOxsQ/fXqKEhwyIlSdWrh+jgwQP6fMmntkSyTdt2tv5V762me++tpnatW+jnbVvV4OFQu/MlJyVp008b9cbUGXfsHgBIZYL89MbITmo/cJYyL918XbZPv9umNVt+VXAJHw3r0UIf/7e3Hus1TZmXrshisci9SGE9P2Wp1mz+VZIUPma+Dke/piYP3qsfYn+5U7eDfC5/1w0dxyUSyZ07d6pt27a6cOGCzp8/r4CAAJ08eVJFixZVYGDg3yaSY8aMUWRkpF2bUYhq5N2sZMmSqlS5sl1bpUqV9EP0qpseU6ZsWfn7+ysx8UiORHL5si/k6+enJs0ec0i8AG6sTvVyCiruo9jFo21thQsX0iN1K2vAs43l22CYsrMNpaVfVFr6RR1KPKGtuw/r+IYp6vDYA1ry/XYlnUyTJP36e5LtHCfPpOtkarrKBl9dmy/5VJqCihezu3ZgwNXPyf//eACO4RKJ5PDhw/X4449rzpw58vX11ebNm1WkSBF1795dQ4cO/dtjrdacw9gsSH53q12nrg5fN93hyOHDKl36npsek5yUpNTUVJUsYf/wjWEY+mr5l3r8iY4qUqSIQ+IFcGPrtsar3tOT7drem9hd8QnJmjo/2vZU9l9ZLBZZdLUKKUmxcb9LkqpWCNSfKamSJH+foirh563E46clSVt2J2hCxOMqXNhNV65kS7o6tzI+IYlhbeQeJUlTXGJB8ri4OD3//PNyc3NToUKFlJmZqbJly2rKlCl68cUXnR0e7rDuPcK1Z/cuvf/eHCUeOaJvV3yjpUuX6NkuXSVJF86f17T//Ve7d8Xpzz//0JbNsRo6+D8qW668Gj7yqN25tm7ZrD//+ENPdXraGbcCFGjpFzK1/9Bxu+18xiWdPnte+w8dV4V7imtE71aqU72sygb76+EHKmrRG32UkXlZqzbukyQdTEzRN+t26X8jn9bDD1RUSOVSmjvpOcUfTtb6n68+xf3Zdz/r0uUszRnfTdUrBevpVnUV0bWp3vx4nTNvHygQXKIiWaRIEbm5Xc1pAwMDlZiYqOrVq8vX11dHjx51cnS402rUrKVpM2fpzRnT9O7st3VPmTIaNfpFtWv/hCTJrVAh/Rb/m77+arnOpZ1TYGCgQhs2UsTgoXZrSUrSsi+WqnbtOqpYqfKNLgXAiTIvXVGjOpU1qGtT+fsUVcqpc9q446Ca9ZyqE2fSbf36jFuoKSOe0pdvDlR2tqGN2w+oQ8TbtupjWvpFPf6fWZrxwjPatHi0TqWmK+q971j6B3lioSRpiku8a7tVq1bq2bOnunbtqn79+mn37t0aMmSIFi5cqDNnzmjLli15Oh9D20D+xbu2gfzLme/a3nLorMPO3aCy76073aVcYmj7tddeU6lSpSRJkydPlr+/vwYOHKgTJ07ovffec3J0AAAgv7NYHLflZy6RSNavX1/NmjWTdHVo+/vvv1daWpq2b9+uBx54wMnRAQCA/M7iwC2vNmzYoMcff1ylS5eWxWLR8uXL7fb37Nnz6oNpf9lat7Z/a9Tp06fVrVs3+fj4yM/PT3369FF6erpdn927d+vRRx+Vh4eH7dmUvHKJRBIAAABXnT9/Xg888IDefvvtm/Zp3bq1jh8/bts++eQTu/3dunXTvn37FB0drRUrVmjDhg3q37+/bX9aWppatWql8uXLa/v27XrjjTc0YcKEPI8Eu8TDNnXq1Lnh+48tFos8PDxUpUoV9ezZ01a1BAAAuK1caAi6TZs2atOmzd/2sVqtCr7J29p++eUXff/999q2bZvq168vSXrrrbfUtm1b/e9//1Pp0qW1aNEiXbp0SR9++KHc3d11//33Ky4uTtOmTbNLOG/FJSqSrVu31u+//y4vLy81a9ZMzZo1k7e3tw4dOqQHH3xQx48fV4sWLfTVV185O1QAAIA8yczMVFpamt12/eud8yomJkaBgYGqVq2aBg4cqFOn/u81obGxsfLz87MlkZLUokULubm52R5gjo2NVePGje1WOwkLC1N8fLzOnDmT6zhcIpE8efKknn/+ef3444+aOnWqpk6dqg0bNmjEiBE6f/68Vq9erbFjx+qVV15xdqgAACAfsjjwT1RUlHx9fe22qKgo07G2bt1aH330kdasWaP//ve/Wr9+vdq0aaOsrKvvqE9KSlJgYKDdMYULF1ZAQICSkpJsfYKCguz6XPt8rU9uuMTQ9pIlS7R9+/Yc7Z07d1a9evU0d+5cdenSRdOmTXNCdAAAAObd6HXO17+VLy86d+5s+7lmzZqqVauWKleurJiYGDVv3tz0ec1wiYqkh4eHNm3alKN906ZN8vDwkCRlZ2fbfgYAALidHLn8j9VqlY+Pj932TxLJ61WqVEklSpTQwYMHJUnBwcFKSUmx63PlyhWdPn3aNq8yODhYycnJdn2ufb7Z3MsbcYmK5ODBgzVgwABt375dDz74oCRp27Ztev/9922vSFy1apVq167txCgBAABczx9//KFTp07Z1uQODQ1Vamqqtm/frnr16kmS1q5dq+zsbDVo0MDW56WXXtLly5dVpEgRSVJ0dLSqVasmf3//XF/bJd5sI0mLFi3SrFmzFB8fL0mqVq2aBg8erK5dr75fOSMjw/YU963wZhsg/+LNNkD+5cw32+w4nOawc9et4JOn/unp6bbqYp06dTRt2jQ1a9ZMAQEBCggI0MSJE9WpUycFBwfr0KFDGjVqlM6dO6c9e/bYKp1t2rRRcnKy5syZo8uXL6tXr16qX7++Fi9eLEk6e/asqlWrplatWmn06NHau3evevfurenTp+fpqW2XSSRvJxJJIP8ikQTyL6cmkkccmEiWz1siGRMTc8MlD8PDwzV79mx17NhRO3fuVGpqqkqXLq1WrVrplVdesXt45vTp0xo0aJC++eYbubm5qVOnTnrzzTfl7e1t67N7925FRERo27ZtKlGihAYPHqzRo0fnKVaXSSRTU1O1dOlS/f777xoxYoQCAgK0Y8cOBQUF6Z577snTuUgkgfyLRBLIv0gk7z4uMUdy9+7datGihXx9fXX48GH17dtXAQEB+vLLL5WYmKiPPvrI2SECAIB8zOJKK5LfRVziqe3IyEj17NlTBw4csJsD2bZtW23YsMGJkQEAAOBmXKIiuW3bNr377rs52u+55548LYoJAABgxg3e1IxccImKpNVqVVpazrkJv/32m0qWLOmEiAAAAHArLpFIPvHEE5o0aZIuX74sSbJYLEpMTNTo0aPVqVMnJ0cHAADyO4sDt/zMJRLJqVOnKj09XYGBgcrIyFCTJk1UpUoVeXt7a/Lkyc4ODwAAADfgEnMkfX19FR0drZ9++km7du1Senq66tatqxYtWjg7NAAAUBDk99Khg7hEIilJa9as0Zo1a5SSkqLs7Gz9+uuvttXXP/zwQydHBwAA8jOW/zHHJRLJiRMnatKkSapfv75KlSolC49OAQAAuDyXSCTnzJmj+fPn67nnnnN2KAAAoACihmWOSzxsc+nSJTVs2NDZYQAAACAPXCKR7Nu3r20+JAAAwJ3G8j/muMTQ9sWLF/Xee+/phx9+UK1atVSkSBG7/dOmTXNSZAAAALgZl0gkd+/erdq1a0uS9u7da7ePB28AAIDDkW6Y4hKJ5Lp165wdAgAAAPLIJRJJAAAAZ2IdSXNc4mEbAAAA3H2oSAIAgAKPRzLMIZEEAAAFHnmkOQxtAwAAwBQqkgAAAJQkTaEiCQAAAFOoSAIAgAKP5X/MoSIJAAAAU6hIAgCAAo/lf8yhIgkAAABTqEgCAIACj4KkOSSSAAAAZJKmMLQNAAAAU6hIAgCAAo/lf8yhIgkAAABTqEgCAIACj+V/zKEiCQAAAFOoSAIAgAKPgqQ5VCQBAABgChVJAAAASpKmkEgCAIACj+V/zGFoGwAAAKZQkQQAAAUey/+YQ0USAAAAplCRBAAABR4FSXOoSAIAAMAUKpIAAACUJE2hIgkAAABTqEgCAIACj3UkzSGRBAAABR7L/5jD0DYAAABMoSIJAAAKPAqS5lCRBAAAgClUJAEAQIHHHElzqEgCAADAFBJJAAAAWRy45c2GDRv0+OOPq3Tp0rJYLFq+fLndfsMw9PLLL6tUqVLy9PRUixYtdODAAbs+p0+fVrdu3eTj4yM/Pz/16dNH6enpdn12796tRx99VB4eHipbtqymTJmS51hJJAEAAFzI+fPn9cADD+jtt9++4f4pU6bozTff1Jw5c7RlyxZ5eXkpLCxMFy9etPXp1q2b9u3bp+joaK1YsUIbNmxQ//79bfvT0tLUqlUrlS9fXtu3b9cbb7yhCRMm6L333stTrBbDMAxzt+m6Ll5xdgQAHMX/wUHODgGAg2TsnOW0a/+Zeslh577Hz930sRaLRcuWLVPHjh0lXa1Gli5dWs8//7xGjBghSTp79qyCgoI0f/58de7cWb/88otCQkK0bds21a9fX5L0/fffq23btvrjjz9UunRpzZ49Wy+99JKSkpLk7n41vhdeeEHLly/Xr7/+muv4qEgCAIACz5ED25mZmUpLS7PbMjMzTcWZkJCgpKQktWjRwtbm6+urBg0aKDY2VpIUGxsrPz8/WxIpSS1atJCbm5u2bNli69O4cWNbEilJYWFhio+P15kzZ3IdD4kkAACAA0VFRcnX19dui4qKMnWupKQkSVJQUJBde1BQkG1fUlKSAgMD7fYXLlxYAQEBdn1udI6/XiM3WP4HAAAUeI5c/mfMmDGKjIy0a7NarY674B1EIgkAAOBAVqv1tiWOwcHBkqTk5GSVKlXK1p6cnKzatWvb+qSkpNgdd+XKFZ0+fdp2fHBwsJKTk+36XPt8rU9uMLQNAAAKPIsD/9xOFStWVHBwsNasWWNrS0tL05YtWxQaGipJCg0NVWpqqrZv327rs3btWmVnZ6tBgwa2Phs2bNDly5dtfaKjo1WtWjX5+/vnOh4SSQAAABeSnp6uuLg4xcXFSbr6gE1cXJwSExNlsVg0bNgwvfrqq/r666+1Z88e9ejRQ6VLl7Y92V29enW1bt1a/fr109atW/XTTz9p0KBB6ty5s0qXLi1J6tq1q9zd3dWnTx/t27dPn332mWbOnJljCP5WGNoGAABwoVck/vzzz2rWrJnt87XkLjw8XPPnz9eoUaN0/vx59e/fX6mpqXrkkUf0/fffy8PDw3bMokWLNGjQIDVv3lxubm7q1KmT3nzzTdt+X19frV69WhEREapXr55KlCihl19+2W6tydxgHUkAdxXWkQTyL2euI5mUdvnWnUwK9inisHM7GxVJAABQ4LlQQfKuQiIJAAAKPEcu/5Of8bANAAAATKEiCQAACrzbvUxPQUFFEgAAAKZQkQQAAKAgaQoVSQAAAJhCRRIAABR4FCTNoSIJAAAAU6hIAgCAAo91JM0hkQQAAAUey/+Yw9A2AAAATKEiCQAACjyGts2hIgkAAABTSCQBAABgCokkAAAATGGOJAAAKPCYI2kOFUkAAACYQkUSAAAUeKwjaQ6JJAAAKPAY2jaHoW0AAACYQkUSAAAUeBQkzaEiCQAAAFOoSAIAAFCSNIWKJAAAAEyhIgkAAAo8lv8xh4okAAAATKEiCQAACjzWkTSHiiQAAABMoSIJAAAKPAqS5pBIAgAAkEmawtA2AAAATKEiCQAACjyW/zGHiiQAAABMoSIJAAAKPJb/MYeKJAAAAEyxGIZhODsIwKzMzExFRUVpzJgxslqtzg4HwG3E7zfg+kgkcVdLS0uTr6+vzp49Kx8fH2eHA+A24vcbcH0MbQMAAMAUEkkAAACYQiIJAAAAU0gkcVezWq0aP348E/GBfIjfb8D18bANAAAATKEiCQAAAFNIJAEAAGAKiSQAAABMIZHEXSkmJkYWi0Wpqal/269ChQqaMWPGHYkJgPNMmDBBtWvXdnYYQIHDwza4K126dEmnT59WUFCQLBaL5s+fr2HDhuVILE+cOCEvLy8VLVrUOYECuO0sFouWLVumjh072trS09OVmZmp4sWLOy8woAAq7OwAADPc3d0VHBx8y34lS5a8A9EAcDZvb295e3s7OwygwGFoGw7TtGlTDRo0SIMGDZKvr69KlCihcePG6VoR/MyZM+rRo4f8/f1VtGhRtWnTRgcOHLAdf+TIET3++OPy9/eXl5eX7r//fn377beS7Ie2Y2Ji1KtXL509e1YWi0UWi0UTJkyQZD+03bVrVz377LN2MV6+fFklSpTQRx99JEnKzs5WVFSUKlasKE9PTz3wwANaunSpg78p4O7QtGlTDRkyRKNGjVJAQICCg4Ntv2uSlJqaqr59+6pkyZLy8fHRY489pl27dtmd49VXX1VgYKCKFSumvn376oUXXrAbkt62bZtatmypEiVKyNfXV02aNNGOHTts+ytUqCBJevLJJ2WxWGyf/zq0vXr1anl4eOQYoRg6dKgee+wx2+eNGzfq0Ucflaenp8qWLashQ4bo/Pnz//h7AgoSEkk41IIFC1S4cGFt3bpVM2fO1LRp0/T+++9Lknr27Kmff/5ZX3/9tWJjY2UYhtq2bavLly9LkiIiIpSZmakNGzZoz549+u9//3vDikPDhg01Y8YM+fj46Pjx4zp+/LhGjBiRo1+3bt30zTffKD093da2atUqXbhwQU8++aQkKSoqSh999JHmzJmjffv2afjw4erevbvWr1/viK8HuOssWLBAXl5e2rJli6ZMmaJJkyYpOjpakvSvf/1LKSkp+u6777R9+3bVrVtXzZs31+nTpyVJixYt0uTJk/Xf//5X27dvV7ly5TR79my78587d07h4eHauHGjNm/erKpVq6pt27Y6d+6cpKuJpiTNmzdPx48ft33+q+bNm8vPz09ffPGFrS0rK0ufffaZunXrJkk6dOiQWrdurU6dOmn37t367LPPtHHjRg0aNOj2f2lAfmYADtKkSROjevXqRnZ2tq1t9OjRRvXq1Y3ffvvNkGT89NNPtn0nT540PD09jSVLlhiGYRg1a9Y0JkyYcMNzr1u3zpBknDlzxjAMw5g3b57h6+ubo1/58uWN6dOnG4ZhGJcvXzZKlChhfPTRR7b9Xbp0MZ599lnDMAzj4sWLRtGiRY1NmzbZnaNPnz5Gly5d8nz/QH7TpEkT45FHHrFre/DBB43Ro0cbP/74o+Hj42NcvHjRbn/lypWNd9991zAMw2jQoIERERFht79Ro0bGAw88cNNrZmVlGcWKFTO++eYbW5skY9myZXb9xo8fb3eeoUOHGo899pjt86pVqwyr1Wr7O6NPnz5G//797c7x448/Gm5ubkZGRsZN4wFgj4okHOrhhx+WxWKxfQ4NDdWBAwe0f/9+FS5cWA0aNLDtK168uKpVq6ZffvlFkjRkyBC9+uqratSokcaPH6/du3f/o1gKFy6sZ555RosWLZIknT9/Xl999ZWtQnHw4EFduHBBLVu2tM238vb21kcffaRDhw79o2sD+UWtWrXsPpcqVUopKSnatWuX0tPTVbx4cbvfn4SEBNvvT3x8vB566CG746//nJycrH79+qlq1ary9fWVj4+P0tPTlZiYmKc4u3XrppiYGB07dkzS1Wpou3bt5OfnJ0natWuX5s+fbxdrWFiYsrOzlZCQkKdrAQUZD9vAZfXt21dhYWFauXKlVq9eraioKE2dOlWDBw82fc5u3bqpSZMmSklJUXR0tDw9PdW6dWtJsg15r1y5Uvfcc4/dcbzrF7iqSJEidp8tFouys7OVnp6uUqVKKSYmJscx15K33AgPD9epU6c0c+ZMlS9fXlarVaGhobp06VKe4nzwwQdVuXJlffrppxo4cKCWLVum+fPn2/anp6fr3//+t4YMGZLj2HLlyuXpWkBBRiIJh9qyZYvd52tznkJCQnTlyhVt2bJFDRs2lCSdOnVK8fHxCgkJsfUvW7asBgwYoAEDBmjMmDGaO3fuDRNJd3d3ZWVl3TKehg0bqmzZsvrss8/03Xff6V//+pftH8aQkBBZrVYlJiaqSZMm/+S2gQKnbt26SkpKUuHChW0PwFyvWrVq2rZtm3r06GFru36O408//aR33nlHbdu2lSQdPXpUJ0+etOtTpEiRXP2+d+vWTYsWLVKZMmXk5uamdu3a2cW7f/9+ValSJbe3COAGGNqGQyUmJioyMlLx8fH65JNP9NZbb2no0KGqWrWqOnTooH79+mnjxo3atWuXunfvrnvuuUcdOnSQJA0bNkyrVq1SQkKCduzYoXXr1ql69eo3vE6FChWUnp6uNWvW6OTJk7pw4cJNY+ratavmzJmj6Oho27C2JBUrVkwjRozQ8OHDtWDBAh06dEg7duzQW2+9pQULFtzeLwbIZ1q0aKHQ0FB17NhRq1ev1uHDh7Vp0ya99NJL+vnnnyVJgwcP1gcffKAFCxbowIEDevXVV7V792676S9Vq1bVwoUL9csvv2jLli3q1q2bPD097a5VoUIFrVmzRklJSTpz5sxNY+rWrZt27NihyZMn6+mnn7YbWRg9erQ2bdqkQYMGKS4uTgcOHNBXX33FwzZAHpFIwqF69OihjIwMPfTQQ4qIiNDQoUPVv39/SVefuqxXr57at2+v0NBQGYahb7/91lYhzMrKUkREhKpXr67WrVvr3nvv1TvvvHPD6zRs2FADBgzQs88+q5IlS2rKlCk3jalbt27av3+/7rnnHjVq1Mhu3yuvvKJx48YpKirKdt2VK1eqYsWKt+kbAfIni8Wib7/9Vo0bN1avXr107733qnPnzjpy5IiCgoIkXf3dGzNmjEaMGKG6desqISFBPXv2lIeHh+08H3zwgc6cOaO6devqueee05AhQxQYGGh3ralTpyo6Olply5ZVnTp1bhpTlSpV9NBDD2n37t12/9EoXZ3ruX79ev3222969NFHVadOHb388ssqXbr0bfxWgPyPN9vAYZo2baratWvzikIAN9WyZUsFBwdr4cKFzg4FgAnMkQQA3BEXLlzQnDlzFBYWpkKFCumTTz7RDz/8YFuHEsDdh0QSAHBHXBv+njx5si5evKhq1arpiy++UIsWLZwdGgCTGNoGAACAKTxsAwAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEoBpPXv2VMeOHW2fmzZtqmHDht3xOGJiYmSxWJSamuqwa1x/r2bciTgB4E4ikQTymZ49e8pischiscjd3V1VqlTRpEmTdOXKFYdf+8svv9Qrr7ySq753OqmqUKECb1kCgNuMBcmBfKh169aaN2+eMjMz9e233yoiIkJFihTRmDFjcvS9dOmS3N3db8t1AwICbst5AAB3ByqSQD5ktVoVHBys8uXLa+DAgWrRooW+/vprSf83RDt58mSVLl1a1apVkyQdPXpUzzzzjPz8/BQQEKAOHTro8OHDtnNmZWUpMjJSfn5+Kl68uEaNGqXr32dw/dB2ZmamRo8erbJly8pqtapKlSr64IMPdPjwYTVr1kyS5O/vL4vFop49e0qSsrOzFRUVpYoVK8rT01MPPPCAli5danedb7/9Vvfee688PT3VrFkzuzjNyMrKUp8+fWzXrFatmmbOnHnDvhMnTlTJkiXl4+OjAQMG6NKlS7Z9uYn9r44cOaLHH39c/v7+8vLy0v33369vv/32H90LANxJVCSBAsDT01OnTp2yfV6zZo18fHxs7zi+fPmywsLCFBoaqh9//FGFCxfWq6++qtatW2v37t1yd3fX1KlTNX/+fH344YeqXr26pk6dqmXLlumxxx676XV79Oih2NhYvfnmm3rggQeUkJCgkydPqmzZsvriiy/UqVMnxcfHy8fHR56enpKkqKgoffzxx5ozZ46qVq2qDRs2qHv37ipZsqSaNGmio0eP6qmnnlJERIT69++vn3/+Wc8///w/+n6ys7NVpkwZff755ypevLg2bdqk/v37q1SpUnrmmWfsvjcPDw/FxMTo8OHD6tWrl4oXL67JkyfnKvbrRURE6NKlS9qwYYO8vLy0f/9+eXt7/6N7AYA7ygCQr4SHhxsdOnQwDMMwsrOzjejoaMNqtRojRoyw7Q8KCjIyMzNtxyxcuNCoVq2akZ2dbWvLzMw0PD09jVWrVhmGYRilSpUypkyZYtt/+fJlo0yZMrZrGYZhNGnSxBg6dKhhGIYRHx9vSDKio6NvGOe6desMScaZM2dsbRcvXjSKFi1qbNq0ya5vnz59jC5duhiGYRhjxowxQkJC7PaPHj06x7muV758eWP69Ok33X+9iIgIo1OnTrbP4eHhRkBAgHH+/Hlb2+zZsw1vb28jKysrV7Fff881a9Y0JkyYkOuYAMDVUJEE8qEVK1bI29tbly9fVnZ2trp27aoJEybY9tesWdNuXuSuXbt08OBBFStWzO48Fy9e1KFDh3T27FkdP35cDRo0sO0rXLiw6tevn2N4+5q4uDgVKlTohpW4mzl48KAuXLigli1b2rVfunRJderUkST98ssvdnFIUmhoaK6vcTNvv/22PvzwQyUmJiojI0OXLl1S7dq17fo88MADKlq0qN1109PTdfToUaWnp98y9usNGTJEAwcO1OrVq9WiRQt16tRJtWrV+sf3AgB3CokkkA81a9ZMs2fPlru7u0qXLq3Che1/1b28vOw+p6enq169elq0aFGOc5UsWdJUDNeGqvMiPT1dkrRy5Urdc889dvusVqupOHLj008/1YgRIzR16lSFhoaqWLFieuONN7Rly5Zcn8NM7H379lVYWJhWrlyp1atXKyoqSlOnTtXgwYPN3wwA3EEkkkA+5OXlpSpVquS6f926dfXZZ58pMDBQPj4+N+xTqlQpbdmyRY0bN5YkXblyRdu3b1fdunVv2L9mzZrKzs7W+vXr1aJFixz7r1VEs7KybG0hISGyWq1KTEy8aSWzevXqtgeHrtm8efOtb/Jv/PTTT2rYsKH+85//2NoOHTqUo9+uXbuUkZFhS5I3b94sb29vlS1bVgEBAbeM/UbKli2rAQMGaMCAARozZozmzp1LIgngrsFT2wDUrVs3lShRQh06dNCPP/6ohIQExcTEaMiQIfrjjz8kSUOHDtXrr7+u5cuX69dff9V//vOfv10DskKFCgoPD1fv3r21fPly2zmXLFkiSSpfvrwsFotWrFihEydOKD09XcWKFdOIESM0fPhwLViwQIcOHdKOHTv01ltvacGCBZKkAQMG6MCBAxo5cqTi4+O1ePFizZ8/P1f3+eeffyouLs5uO3PmjKpWraqff/5Zq1at0m+//aZx48Zp27ZtOY6/dOmS+vTpo/379+vbb7/V+PHjNWjQILm5ueUq9usNGzZMq1atUkJCgnbs2KF169apevXquboXAHAJzp6kCeD2+uvDNnnZf/z4caNHjx5GiRIlDKvValSqVMno16+fcfbsWcMwrj5cM3ToUMPHx8fw8/MzIiMjjR49etz0YRvDMIyMjAxj+PDhRqlSpQx3d3ejSpUqxocffmjbP2nSJCM4ONiwWCxGeHi4YRhXHxCaMWOGUa1aNaNIkSJGyZIljbCwMGP9+vW247755hujSpUqhtVqNR599FHjww8/zNXDNpJybAsXLjQuXrxo9OzZ0/D19TX8/PyMgQMHGi+88ILxwAMP5PjeXn75ZaN48eKGt7e30a9fP+PixYu2PreK/fqHbQYNGmRUrlzZsFqtRsmSJY3nnnvOOHny5E3vAQBcjcUwbjJTHgAAAPgbDG0DAADAFBJJAAAAmEIiCQAAAFNIJAEAAGAKiSQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU/4f3iKLrLVHTFYAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_confusion_matrix(y_test, y_pred, ['positive', 'negative'], 'NB')"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2580FJCGs_oQ",
"outputId": "118f79e2-6b57-4cc0-a631-c2ef8a7e317e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classification Report NB:\n",
" precision recall f1-score support\n",
"\n",
" negative 0.86 0.87 0.86 5017\n",
" positive 0.87 0.86 0.86 4983\n",
"\n",
" accuracy 0.86 10000\n",
" macro avg 0.86 0.86 0.86 10000\n",
"weighted avg 0.86 0.86 0.86 10000\n",
"\n"
]
}
],
"source": [
"# Imprimir as métricas de avaliação\n",
"print_evaluation_metrics(y_test, y_pred, 'NB')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0JBy6nXvdjC"
},
"source": [
"# Conclusão\n",
"\n",
"É possível verificar no relatório de classificação que precisão e recall estão variando entre 86 a 87%. A métrica **F1-Score** combina precisão e recall, possui valor de aproximadamente 86%, o que indica um bom equilíbrio entre precisão e recall. A **Acurácia (accuracy)** geral do modelo é de 86%, o que significa que ele classificou corretamente aproximadamente 86% de todos os exemplos no conjunto de teste.\n",
"\n",
"O modelo Naive Bayes com vetorização TF-IDF conseguiu alcançar uma precisão, recall e F1-Score bastante equilibrados para ambas as classes, com uma acurácia geral de 86%. Podemos afirmar que o modelo é capaz de fazer previsões precisas em relação ao sentimento das revisões. Assim, podemos afirmar que o modelo estatístico possui um desempenho consideravelmente superior em relação à abordagem simbólica.\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|