Spaces:
Sleeping
Sleeping
new fix
Browse files
utils.py
CHANGED
@@ -1,15 +1,78 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
-
import os
|
4 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512', model_version=None):
|
7 |
-
gan = LightweightGAN.from_pretrained(model_name, version=model_version, use_auth_token=os.environ["access_token"])
|
8 |
gan.eval()
|
9 |
return gan
|
10 |
|
|
|
11 |
def generate(gan, batch_size=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
with torch.no_grad():
|
13 |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
|
14 |
-
ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
|
15 |
-
return ims
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
CONFIG_NAME = "config.json"
|
9 |
+
revision = None
|
10 |
+
cache_dir = None
|
11 |
+
force_download = False
|
12 |
+
proxies = None
|
13 |
+
resume_download = False
|
14 |
+
local_files_only = False
|
15 |
+
token = None
|
16 |
+
|
17 |
+
|
18 |
+
def load_model(model_name="ceyda/butterfly_cropped_uniq1K_512"):
|
19 |
+
"""
|
20 |
+
Loads a pre-trained LightweightGAN model from Hugging Face Model Hub.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model_name (str): The name of the pre-trained model to load. Defaults to "ceyda/butterfly_cropped_uniq1K_512".
|
24 |
+
model_version (str): The version of the pre-trained model to load. Defaults to None.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
LightweightGAN: The loaded pre-trained model.
|
28 |
+
"""
|
29 |
+
# Load the config
|
30 |
+
config_file = hf_hub_download(
|
31 |
+
repo_id=str(model_name),
|
32 |
+
filename=CONFIG_NAME,
|
33 |
+
revision=revision,
|
34 |
+
cache_dir=cache_dir,
|
35 |
+
force_download=force_download,
|
36 |
+
proxies=proxies,
|
37 |
+
resume_download=resume_download,
|
38 |
+
token=token,
|
39 |
+
local_files_only=local_files_only,
|
40 |
+
)
|
41 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
42 |
+
config = json.load(f)
|
43 |
+
|
44 |
+
# Call the _from_pretrained with all the needed arguments
|
45 |
+
gan = LightweightGAN(latent_dim=256, image_size=512)
|
46 |
+
|
47 |
+
gan = gan._from_pretrained(
|
48 |
+
model_id=str(model_name),
|
49 |
+
revision=revision,
|
50 |
+
cache_dir=cache_dir,
|
51 |
+
force_download=force_download,
|
52 |
+
proxies=proxies,
|
53 |
+
resume_download=resume_download,
|
54 |
+
local_files_only=local_files_only,
|
55 |
+
token=token,
|
56 |
+
use_auth_token=False,
|
57 |
+
config=config, # usually in **model_kwargs
|
58 |
+
)
|
59 |
|
|
|
|
|
60 |
gan.eval()
|
61 |
return gan
|
62 |
|
63 |
+
|
64 |
def generate(gan, batch_size=1):
|
65 |
+
"""
|
66 |
+
Generates images using the given GAN model.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
gan (nn.Module): The GAN model to use for generating images.
|
70 |
+
batch_size (int, optional): The number of images to generate in each batch. Defaults to 1.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
numpy.ndarray: A numpy array of generated images.
|
74 |
+
"""
|
75 |
with torch.no_grad():
|
76 |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
|
77 |
+
ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
78 |
+
return ims
|