_-_-_-_-_-_ / facefusion /face_analyser.py
Rohit Kochikkat Francis
Git LFS
e7cae83
raw
history blame
28.5 kB
from typing import Any, Optional, List, Tuple
from time import sleep
import cv2
import numpy
import onnxruntime
import facefusion.globals
from facefusion import process_manager
from facefusion.common_helper import get_first
from facefusion.face_helper import estimate_matrix_by_face_landmark_5, warp_face_by_face_landmark_5, warp_face_by_translation, create_static_anchors, distance_to_face_landmark_5, distance_to_bounding_box, convert_face_landmark_68_to_5, apply_nms, categorize_age, categorize_gender
from facefusion.face_store import get_static_faces, set_static_faces
from facefusion.execution import apply_execution_provider_options
from facefusion.download import conditional_download
from facefusion.filesystem import resolve_relative_path, is_file
from facefusion.thread_helper import thread_lock, thread_semaphore, conditional_thread_semaphore
from facefusion.typing import VisionFrame, Face, FaceSet, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelSet, BoundingBox, FaceLandmarkSet, FaceLandmark5, FaceLandmark68, Score, FaceScoreSet, Embedding
from facefusion.vision import resize_frame_resolution, unpack_resolution
FACE_ANALYSER = None
MODELS : ModelSet =\
{
'face_detector_retinaface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx',
'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
},
'face_detector_scrfd':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/scrfd_2.5g.onnx',
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx')
},
'face_detector_yoloface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yoloface_8n.onnx',
'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx')
},
'face_detector_yunet':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx',
'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx')
},
'face_recognizer_arcface_blendswap':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_recognizer_arcface_inswapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_recognizer_arcface_simswap':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx',
'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
},
'face_recognizer_arcface_uniface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_landmarker_68':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/2dfan4.onnx',
'path': resolve_relative_path('../.assets/models/2dfan4.onnx')
},
'face_landmarker_68_5':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_landmarker_68_5.onnx',
'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx')
},
'gender_age':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx',
'path': resolve_relative_path('../.assets/models/gender_age.onnx')
}
}
def get_face_analyser() -> Any:
global FACE_ANALYSER
face_detectors = {}
face_landmarkers = {}
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if FACE_ANALYSER is None:
if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]:
face_detectors['retinaface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
face_detectors['scrfd'] = onnxruntime.InferenceSession(MODELS.get('face_detector_scrfd').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
face_detectors['yoloface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_yoloface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'yunet' ]:
face_detectors['yunet'] = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0))
if facefusion.globals.face_recognizer_model == 'arcface_blendswap':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_simswap':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_uniface':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_uniface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
face_landmarkers['68'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
face_landmarkers['68_5'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68_5').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
FACE_ANALYSER =\
{
'face_detectors': face_detectors,
'face_recognizer': face_recognizer,
'face_landmarkers': face_landmarkers,
'gender_age': gender_age
}
return FACE_ANALYSER
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_urls =\
[
MODELS.get('face_landmarker_68').get('url'),
MODELS.get('face_landmarker_68_5').get('url'),
MODELS.get('gender_age').get('url')
]
model_paths =\
[
MODELS.get('face_landmarker_68').get('path'),
MODELS.get('face_landmarker_68_5').get('path'),
MODELS.get('gender_age').get('path')
]
if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]:
model_urls.append(MODELS.get('face_detector_retinaface').get('url'))
model_paths.append(MODELS.get('face_detector_retinaface').get('path'))
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
model_urls.append(MODELS.get('face_detector_scrfd').get('url'))
model_paths.append(MODELS.get('face_detector_scrfd').get('path'))
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
model_urls.append(MODELS.get('face_detector_yoloface').get('url'))
model_paths.append(MODELS.get('face_detector_yoloface').get('path'))
if facefusion.globals.face_detector_model in [ 'yunet' ]:
model_urls.append(MODELS.get('face_detector_yunet').get('url'))
model_paths.append(MODELS.get('face_detector_yunet').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_blendswap':
model_urls.append(MODELS.get('face_recognizer_arcface_blendswap').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_blendswap').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
model_urls.append(MODELS.get('face_recognizer_arcface_inswapper').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_inswapper').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_simswap':
model_urls.append(MODELS.get('face_recognizer_arcface_simswap').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_simswap').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_uniface':
model_urls.append(MODELS.get('face_recognizer_arcface_uniface').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_uniface').get('path'))
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, model_urls)
process_manager.end()
return all(is_file(model_path) for model_path in model_paths)
def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('retinaface')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
feature_strides = [ 8, 16, 32 ]
feature_map_channel = 3
anchor_total = 2
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
for index, feature_stride in enumerate(feature_strides):
keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
if keep_indices.any():
stride_height = face_detector_height // feature_stride
stride_width = face_detector_width // feature_stride
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
bounding_box_raw = detections[index + feature_map_channel] * feature_stride
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
bounding_box_list.append(numpy.array(
[
bounding_box[0] * ratio_width,
bounding_box[1] * ratio_height,
bounding_box[2] * ratio_width,
bounding_box[3] * ratio_height
]))
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ])
for score in detections[index][keep_indices]:
score_list.append(score[0])
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('scrfd')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
feature_strides = [ 8, 16, 32 ]
feature_map_channel = 3
anchor_total = 2
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
for index, feature_stride in enumerate(feature_strides):
keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
if keep_indices.any():
stride_height = face_detector_height // feature_stride
stride_width = face_detector_width // feature_stride
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
bounding_box_raw = detections[index + feature_map_channel] * feature_stride
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
bounding_box_list.append(numpy.array(
[
bounding_box[0] * ratio_width,
bounding_box[1] * ratio_height,
bounding_box[2] * ratio_width,
bounding_box[3] * ratio_height
]))
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ])
for score in detections[index][keep_indices]:
score_list.append(score[0])
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_yoloface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('yoloface')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
detections = numpy.squeeze(detections).T
bounding_box_raw, score_raw, face_landmark_5_raw = numpy.split(detections, [ 4, 5 ], axis = 1)
keep_indices = numpy.where(score_raw > facefusion.globals.face_detector_score)[0]
if keep_indices.any():
bounding_box_raw, face_landmark_5_raw, score_raw = bounding_box_raw[keep_indices], face_landmark_5_raw[keep_indices], score_raw[keep_indices]
for bounding_box in bounding_box_raw:
bounding_box_list.append(numpy.array(
[
(bounding_box[0] - bounding_box[2] / 2) * ratio_width,
(bounding_box[1] - bounding_box[3] / 2) * ratio_height,
(bounding_box[0] + bounding_box[2] / 2) * ratio_width,
(bounding_box[1] + bounding_box[3] / 2) * ratio_height
]))
face_landmark_5_raw[:, 0::3] = (face_landmark_5_raw[:, 0::3]) * ratio_width
face_landmark_5_raw[:, 1::3] = (face_landmark_5_raw[:, 1::3]) * ratio_height
for face_landmark_5 in face_landmark_5_raw:
face_landmark_5_list.append(numpy.array(face_landmark_5.reshape(-1, 3)[:, :2]))
score_list = score_raw.ravel().tolist()
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_yunet(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('yunet')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
bounding_box_list = []
face_landmark_5_list = []
score_list = []
face_detector.setInputSize((temp_vision_frame.shape[1], temp_vision_frame.shape[0]))
face_detector.setScoreThreshold(facefusion.globals.face_detector_score)
with thread_semaphore():
_, detections = face_detector.detect(temp_vision_frame)
if numpy.any(detections):
for detection in detections:
bounding_box_list.append(numpy.array(
[
detection[0] * ratio_width,
detection[1] * ratio_height,
(detection[0] + detection[2]) * ratio_width,
(detection[1] + detection[3]) * ratio_height
]))
face_landmark_5_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height ])
score_list.append(detection[14])
return bounding_box_list, face_landmark_5_list, score_list
def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame:
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame
detect_vision_frame = (detect_vision_frame - 127.5) / 128.0
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return detect_vision_frame
def create_faces(vision_frame : VisionFrame, bounding_box_list : List[BoundingBox], face_landmark_5_list : List[FaceLandmark5], score_list : List[Score]) -> List[Face]:
faces = []
if facefusion.globals.face_detector_score > 0:
sort_indices = numpy.argsort(-numpy.array(score_list))
bounding_box_list = [ bounding_box_list[index] for index in sort_indices ]
face_landmark_5_list = [face_landmark_5_list[index] for index in sort_indices]
score_list = [ score_list[index] for index in sort_indices ]
iou_threshold = 0.1 if facefusion.globals.face_detector_model == 'many' else 0.4
keep_indices = apply_nms(bounding_box_list, iou_threshold)
for index in keep_indices:
bounding_box = bounding_box_list[index]
face_landmark_5_68 = face_landmark_5_list[index]
face_landmark_68_5 = expand_face_landmark_68_from_5(face_landmark_5_68)
face_landmark_68 = face_landmark_68_5
face_landmark_68_score = 0.0
if facefusion.globals.face_landmarker_score > 0:
face_landmark_68, face_landmark_68_score = detect_face_landmark_68(vision_frame, bounding_box)
if face_landmark_68_score > facefusion.globals.face_landmarker_score:
face_landmark_5_68 = convert_face_landmark_68_to_5(face_landmark_68)
landmarks : FaceLandmarkSet =\
{
'5': face_landmark_5_list[index],
'5/68': face_landmark_5_68,
'68': face_landmark_68,
'68/5': face_landmark_68_5
}
scores : FaceScoreSet = \
{
'detector': score_list[index],
'landmarker': face_landmark_68_score
}
embedding, normed_embedding = calc_embedding(vision_frame, landmarks.get('5/68'))
gender, age = detect_gender_age(vision_frame, bounding_box)
faces.append(Face(
bounding_box = bounding_box,
landmarks = landmarks,
scores = scores,
embedding = embedding,
normed_embedding = normed_embedding,
gender = gender,
age = age
))
return faces
def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
face_recognizer = get_face_analyser().get('face_recognizer')
crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112))
crop_vision_frame = crop_vision_frame / 127.5 - 1
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
embedding = face_recognizer.run(None,
{
face_recognizer.get_inputs()[0].name: crop_vision_frame
})[0]
embedding = embedding.ravel()
normed_embedding = embedding / numpy.linalg.norm(embedding)
return embedding, normed_embedding
def detect_face_landmark_68(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[FaceLandmark68, Score]:
face_landmarker = get_face_analyser().get('face_landmarkers').get('68')
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max()
translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256))
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab)
if numpy.mean(crop_vision_frame[:, :, 0]) < 30:
crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0])
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB)
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0
with conditional_thread_semaphore(facefusion.globals.execution_providers):
face_landmark_68, face_heatmap = face_landmarker.run(None,
{
face_landmarker.get_inputs()[0].name: [ crop_vision_frame ]
})
face_landmark_68 = face_landmark_68[:, :, :2][0] / 64
face_landmark_68 = face_landmark_68.reshape(1, -1, 2) * 256
face_landmark_68 = cv2.transform(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
face_landmark_68 = face_landmark_68.reshape(-1, 2)
face_landmark_68_score = numpy.amax(face_heatmap, axis = (2, 3))
face_landmark_68_score = numpy.mean(face_landmark_68_score)
return face_landmark_68, face_landmark_68_score
def expand_face_landmark_68_from_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68:
face_landmarker = get_face_analyser().get('face_landmarkers').get('68_5')
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1))
face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
face_landmark_68_5 = face_landmarker.run(None,
{
face_landmarker.get_inputs()[0].name: [ face_landmark_5 ]
})[0][0]
face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2)
return face_landmark_68_5
def detect_gender_age(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[int, int]:
gender_age = get_face_analyser().get('gender_age')
bounding_box = bounding_box.reshape(2, -1)
scale = 64 / numpy.subtract(*bounding_box[::-1]).max()
translation = 48 - bounding_box.sum(axis = 0) * scale * 0.5
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (96, 96))
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
prediction = gender_age.run(None,
{
gender_age.get_inputs()[0].name: crop_vision_frame
})[0][0]
gender = int(numpy.argmax(prediction[:2]))
age = int(numpy.round(prediction[2] * 100))
return gender, age
def get_one_face(vision_frame : VisionFrame, position : int = 0) -> Optional[Face]:
many_faces = get_many_faces(vision_frame)
if many_faces:
try:
return many_faces[position]
except IndexError:
return many_faces[-1]
return None
def get_average_face(vision_frames : List[VisionFrame], position : int = 0) -> Optional[Face]:
average_face = None
faces = []
embedding_list = []
normed_embedding_list = []
for vision_frame in vision_frames:
face = get_one_face(vision_frame, position)
if face:
faces.append(face)
embedding_list.append(face.embedding)
normed_embedding_list.append(face.normed_embedding)
if faces:
first_face = get_first(faces)
average_face = Face(
bounding_box = first_face.bounding_box,
landmarks = first_face.landmarks,
scores = first_face.scores,
embedding = numpy.mean(embedding_list, axis = 0),
normed_embedding = numpy.mean(normed_embedding_list, axis = 0),
gender = first_face.gender,
age = first_face.age
)
return average_face
def get_many_faces(vision_frame : VisionFrame) -> List[Face]:
faces = []
try:
faces_cache = get_static_faces(vision_frame)
if faces_cache:
faces = faces_cache
else:
bounding_box_list = []
face_landmark_5_list = []
score_list = []
if facefusion.globals.face_detector_model in [ 'many', 'retinaface']:
bounding_box_list_retinaface, face_landmark_5_list_retinaface, score_list_retinaface = detect_with_retinaface(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_retinaface)
face_landmark_5_list.extend(face_landmark_5_list_retinaface)
score_list.extend(score_list_retinaface)
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
bounding_box_list_scrfd, face_landmark_5_list_scrfd, score_list_scrfd = detect_with_scrfd(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_scrfd)
face_landmark_5_list.extend(face_landmark_5_list_scrfd)
score_list.extend(score_list_scrfd)
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
bounding_box_list_yoloface, face_landmark_5_list_yoloface, score_list_yoloface = detect_with_yoloface(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_yoloface)
face_landmark_5_list.extend(face_landmark_5_list_yoloface)
score_list.extend(score_list_yoloface)
if facefusion.globals.face_detector_model in [ 'yunet' ]:
bounding_box_list_yunet, face_landmark_5_list_yunet, score_list_yunet = detect_with_yunet(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_yunet)
face_landmark_5_list.extend(face_landmark_5_list_yunet)
score_list.extend(score_list_yunet)
if bounding_box_list and face_landmark_5_list and score_list:
faces = create_faces(vision_frame, bounding_box_list, face_landmark_5_list, score_list)
if faces:
set_static_faces(vision_frame, faces)
if facefusion.globals.face_analyser_order:
faces = sort_by_order(faces, facefusion.globals.face_analyser_order)
if facefusion.globals.face_analyser_age:
faces = filter_by_age(faces, facefusion.globals.face_analyser_age)
if facefusion.globals.face_analyser_gender:
faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender)
except (AttributeError, ValueError):
pass
return faces
def find_similar_faces(reference_faces : FaceSet, vision_frame : VisionFrame, face_distance : float) -> List[Face]:
similar_faces : List[Face] = []
many_faces = get_many_faces(vision_frame)
if reference_faces:
for reference_set in reference_faces:
if not similar_faces:
for reference_face in reference_faces[reference_set]:
for face in many_faces:
if compare_faces(face, reference_face, face_distance):
similar_faces.append(face)
return similar_faces
def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool:
current_face_distance = calc_face_distance(face, reference_face)
return current_face_distance < face_distance
def calc_face_distance(face : Face, reference_face : Face) -> float:
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
return 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
return 0
def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]:
if order == 'left-right':
return sorted(faces, key = lambda face: face.bounding_box[0])
if order == 'right-left':
return sorted(faces, key = lambda face: face.bounding_box[0], reverse = True)
if order == 'top-bottom':
return sorted(faces, key = lambda face: face.bounding_box[1])
if order == 'bottom-top':
return sorted(faces, key = lambda face: face.bounding_box[1], reverse = True)
if order == 'small-large':
return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]))
if order == 'large-small':
return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]), reverse = True)
if order == 'best-worst':
return sorted(faces, key = lambda face: face.scores.get('detector'), reverse = True)
if order == 'worst-best':
return sorted(faces, key = lambda face: face.scores.get('detector'))
return faces
def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]:
filter_faces = []
for face in faces:
if categorize_age(face.age) == age:
filter_faces.append(face)
return filter_faces
def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]:
filter_faces = []
for face in faces:
if categorize_gender(face.gender) == gender:
filter_faces.append(face)
return filter_faces