_-_-_-_-_-_ / facefusion /content_analyser.py
myfr's picture
Update facefusion/content_analyser.py
d6af301 verified
raw
history blame
3.62 kB
from typing import Any
from functools import lru_cache
from time import sleep
import cv2
import numpy
import onnxruntime
from tqdm import tqdm
import facefusion.globals
from facefusion import process_manager, wording
from facefusion.thread_helper import thread_lock, conditional_thread_semaphore
from facefusion.typing import VisionFrame, ModelSet, Fps
from facefusion.execution import apply_execution_provider_options
from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_video_fps
from facefusion.filesystem import resolve_relative_path, is_file
from facefusion.download import conditional_download
CONTENT_ANALYSER = None
MODELS : ModelSet =\
{
'open_nsfw':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx',
'path': resolve_relative_path('../.assets/models/open_nsfw.onnx')
}
}
PROBABILITY_LIMIT = 0.00
RATE_LIMIT = 0.00
STREAM_COUNTER = 0
def get_content_analyser() -> Any:
global CONTENT_ANALYSER
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if CONTENT_ANALYSER is None:
model_path = MODELS.get('open_nsfw').get('path')
CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
return CONTENT_ANALYSER
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = MODELS.get('open_nsfw').get('url')
model_path = MODELS.get('open_nsfw').get('path')
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, [ model_url ])
process_manager.end()
return is_file(model_path)
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
global STREAM_COUNTER
STREAM_COUNTER = STREAM_COUNTER + 1
if STREAM_COUNTER % int(video_fps) == 0:
return analyse_frame(vision_frame)
return False
def analyse_frame(vision_frame : VisionFrame) -> bool:
content_analyser = get_content_analyser()
vision_frame = prepare_frame(vision_frame)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
probability = content_analyser.run(None,
{
content_analyser.get_inputs()[0].name: vision_frame
})[0][0][1]
return probability > False
def prepare_frame(vision_frame : VisionFrame) -> VisionFrame:
vision_frame = cv2.resize(vision_frame, (224, 224)).astype(numpy.float32)
vision_frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32)
vision_frame = numpy.expand_dims(vision_frame, axis = 0)
return vision_frame
@lru_cache(maxsize = None)
def analyse_image(image_path : str) -> bool:
frame = read_image(image_path)
return analyse_frame(frame)
@lru_cache(maxsize = None)
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
video_frame_total = count_video_frame_total(video_path)
video_fps = detect_video_fps(video_path)
frame_range = range(start_frame or 0, end_frame or video_frame_total)
rate = 0.0
counter = 0
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
for frame_number in frame_range:
if frame_number % int(video_fps) == 0:
frame = get_video_frame(video_path, frame_number)
if analyse_frame(frame):
counter += 1
rate = counter * int(video_fps) / len(frame_range) * 100
progress.update()
progress.set_postfix(rate = rate)
return rate > RATE_LIMIT