_-_-_-_-_-_ / facefusion /face_helper.py
Rohit Kochikkat Francis
Git LFS
e7cae83
raw
history blame
6.88 kB
from typing import Any, Tuple, List
from cv2.typing import Size
from functools import lru_cache
import cv2
import numpy
from facefusion.typing import BoundingBox, FaceLandmark5, FaceLandmark68, VisionFrame, Mask, Matrix, Translation, WarpTemplate, WarpTemplateSet, FaceAnalyserAge, FaceAnalyserGender
WARP_TEMPLATES : WarpTemplateSet =\
{
'arcface_112_v1': numpy.array(
[
[ 0.35473214, 0.45658929 ],
[ 0.64526786, 0.45658929 ],
[ 0.50000000, 0.61154464 ],
[ 0.37913393, 0.77687500 ],
[ 0.62086607, 0.77687500 ]
]),
'arcface_112_v2': numpy.array(
[
[ 0.34191607, 0.46157411 ],
[ 0.65653393, 0.45983393 ],
[ 0.50022500, 0.64050536 ],
[ 0.37097589, 0.82469196 ],
[ 0.63151696, 0.82325089 ]
]),
'arcface_128_v2': numpy.array(
[
[ 0.36167656, 0.40387734 ],
[ 0.63696719, 0.40235469 ],
[ 0.50019687, 0.56044219 ],
[ 0.38710391, 0.72160547 ],
[ 0.61507734, 0.72034453 ]
]),
'ffhq_512': numpy.array(
[
[ 0.37691676, 0.46864664 ],
[ 0.62285697, 0.46912813 ],
[ 0.50123859, 0.61331904 ],
[ 0.39308822, 0.72541100 ],
[ 0.61150205, 0.72490465 ]
])
}
def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size
affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
return affine_matrix
def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
return crop_vision_frame, affine_matrix
def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
affine_matrix = cv2.getAffineTransform(source_points, target_points)
if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
interpolation_method = cv2.INTER_AREA
else:
interpolation_method = cv2.INTER_LINEAR
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
return crop_vision_frame, affine_matrix
def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
return crop_vision_frame, affine_matrix
def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_size = temp_vision_frame.shape[:2][::-1]
inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1)
inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE)
paste_vision_frame = temp_vision_frame.copy()
paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0]
paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1]
paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2]
return paste_vision_frame
@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
anchors = numpy.stack((y, x), axis = -1)
anchors = (anchors * feature_stride).reshape((-1, 2))
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
return anchors
def create_bounding_box_from_face_landmark_68(face_landmark_68 : FaceLandmark68) -> BoundingBox:
min_x, min_y = numpy.min(face_landmark_68, axis = 0)
max_x, max_y = numpy.max(face_landmark_68, axis = 0)
bounding_box = numpy.array([ min_x, min_y, max_x, max_y ]).astype(numpy.int16)
return bounding_box
def distance_to_bounding_box(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> BoundingBox:
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
return bounding_box
def distance_to_face_landmark_5(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> FaceLandmark5:
x = points[:, 0::2] + distance[:, 0::2]
y = points[:, 1::2] + distance[:, 1::2]
face_landmark_5 = numpy.stack((x, y), axis = -1)
return face_landmark_5
def convert_face_landmark_68_to_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
face_landmark_5 = numpy.array(
[
numpy.mean(face_landmark_68[36:42], axis = 0),
numpy.mean(face_landmark_68[42:48], axis = 0),
face_landmark_68[30],
face_landmark_68[48],
face_landmark_68[54]
])
return face_landmark_5
def apply_nms(bounding_box_list : List[BoundingBox], iou_threshold : float) -> List[int]:
keep_indices = []
dimension_list = numpy.reshape(bounding_box_list, (-1, 4))
x1 = dimension_list[:, 0]
y1 = dimension_list[:, 1]
x2 = dimension_list[:, 2]
y2 = dimension_list[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
indices = numpy.arange(len(bounding_box_list))
while indices.size > 0:
index = indices[0]
remain_indices = indices[1:]
keep_indices.append(index)
xx1 = numpy.maximum(x1[index], x1[remain_indices])
yy1 = numpy.maximum(y1[index], y1[remain_indices])
xx2 = numpy.minimum(x2[index], x2[remain_indices])
yy2 = numpy.minimum(y2[index], y2[remain_indices])
width = numpy.maximum(0, xx2 - xx1 + 1)
height = numpy.maximum(0, yy2 - yy1 + 1)
iou = width * height / (areas[index] + areas[remain_indices] - width * height)
indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
return keep_indices
def categorize_age(age : int) -> FaceAnalyserAge:
if age < 13:
return 'child'
elif age < 19:
return 'teen'
elif age < 60:
return 'adult'
return 'senior'
def categorize_gender(gender : int) -> FaceAnalyserGender:
if gender == 0:
return 'female'
return 'male'