File size: 5,659 Bytes
e7cae83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from typing import Any, Dict, List
from cv2.typing import Size
from functools import lru_cache
from time import sleep
import cv2
import numpy
import onnxruntime

import facefusion.globals
from facefusion import process_manager
from facefusion.thread_helper import thread_lock, conditional_thread_semaphore
from facefusion.typing import FaceLandmark68, VisionFrame, Mask, Padding, FaceMaskRegion, ModelSet
from facefusion.execution import apply_execution_provider_options
from facefusion.filesystem import resolve_relative_path, is_file
from facefusion.download import conditional_download

FACE_OCCLUDER = None
FACE_PARSER = None
MODELS : ModelSet =\
{
	'face_occluder':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx',
		'path': resolve_relative_path('../.assets/models/face_occluder.onnx')
	},
	'face_parser':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx',
		'path': resolve_relative_path('../.assets/models/face_parser.onnx')
	}
}
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
	'skin': 1,
	'left-eyebrow': 2,
	'right-eyebrow': 3,
	'left-eye': 4,
	'right-eye': 5,
	'glasses': 6,
	'nose': 10,
	'mouth': 11,
	'upper-lip': 12,
	'lower-lip': 13
}


def get_face_occluder() -> Any:
	global FACE_OCCLUDER

	with thread_lock():
		while process_manager.is_checking():
			sleep(0.5)
		if FACE_OCCLUDER is None:
			model_path = MODELS.get('face_occluder').get('path')
			FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
	return FACE_OCCLUDER


def get_face_parser() -> Any:
	global FACE_PARSER

	with thread_lock():
		while process_manager.is_checking():
			sleep(0.5)
		if FACE_PARSER is None:
			model_path = MODELS.get('face_parser').get('path')
			FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
	return FACE_PARSER


def clear_face_occluder() -> None:
	global FACE_OCCLUDER

	FACE_OCCLUDER = None


def clear_face_parser() -> None:
	global FACE_PARSER

	FACE_PARSER = None


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_urls =\
	[
		MODELS.get('face_occluder').get('url'),
		MODELS.get('face_parser').get('url')
	]
	model_paths =\
	[
		MODELS.get('face_occluder').get('path'),
		MODELS.get('face_parser').get('path')
	]

	if not facefusion.globals.skip_download:
		process_manager.check()
		conditional_download(download_directory_path, model_urls)
		process_manager.end()
	return all(is_file(model_path) for model_path in model_paths)


@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
	blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
	blur_area = max(blur_amount // 2, 1)
	box_mask : Mask = numpy.ones(crop_size, numpy.float32)
	box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
	box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
	box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
	box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
	if blur_amount > 0:
		box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
	return box_mask


def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
	face_occluder = get_face_occluder()
	prepare_vision_frame = cv2.resize(crop_vision_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
	prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
	prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
	with conditional_thread_semaphore(facefusion.globals.execution_providers):
		occlusion_mask : Mask = face_occluder.run(None,
		{
			face_occluder.get_inputs()[0].name: prepare_vision_frame
		})[0][0]
	occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
	occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
	occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
	return occlusion_mask


def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
	face_parser = get_face_parser()
	prepare_vision_frame = cv2.flip(cv2.resize(crop_vision_frame, (512, 512)), 1)
	prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1
	prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
	with conditional_thread_semaphore(facefusion.globals.execution_providers):
		region_mask : Mask = face_parser.run(None,
		{
			face_parser.get_inputs()[0].name: prepare_vision_frame
		})[0][0]
	region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
	region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
	region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
	return region_mask


def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
	convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32))
	mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32)
	mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0)
	mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3)))
	mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15)
	return mouth_mask