Spaces:
Running
Running
File size: 28,539 Bytes
e7cae83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
from typing import Any, Optional, List, Tuple
from time import sleep
import cv2
import numpy
import onnxruntime
import facefusion.globals
from facefusion import process_manager
from facefusion.common_helper import get_first
from facefusion.face_helper import estimate_matrix_by_face_landmark_5, warp_face_by_face_landmark_5, warp_face_by_translation, create_static_anchors, distance_to_face_landmark_5, distance_to_bounding_box, convert_face_landmark_68_to_5, apply_nms, categorize_age, categorize_gender
from facefusion.face_store import get_static_faces, set_static_faces
from facefusion.execution import apply_execution_provider_options
from facefusion.download import conditional_download
from facefusion.filesystem import resolve_relative_path, is_file
from facefusion.thread_helper import thread_lock, thread_semaphore, conditional_thread_semaphore
from facefusion.typing import VisionFrame, Face, FaceSet, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelSet, BoundingBox, FaceLandmarkSet, FaceLandmark5, FaceLandmark68, Score, FaceScoreSet, Embedding
from facefusion.vision import resize_frame_resolution, unpack_resolution
FACE_ANALYSER = None
MODELS : ModelSet =\
{
'face_detector_retinaface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx',
'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
},
'face_detector_scrfd':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/scrfd_2.5g.onnx',
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx')
},
'face_detector_yoloface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yoloface_8n.onnx',
'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx')
},
'face_detector_yunet':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx',
'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx')
},
'face_recognizer_arcface_blendswap':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_recognizer_arcface_inswapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_recognizer_arcface_simswap':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx',
'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
},
'face_recognizer_arcface_uniface':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
},
'face_landmarker_68':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/2dfan4.onnx',
'path': resolve_relative_path('../.assets/models/2dfan4.onnx')
},
'face_landmarker_68_5':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_landmarker_68_5.onnx',
'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx')
},
'gender_age':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx',
'path': resolve_relative_path('../.assets/models/gender_age.onnx')
}
}
def get_face_analyser() -> Any:
global FACE_ANALYSER
face_detectors = {}
face_landmarkers = {}
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if FACE_ANALYSER is None:
if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]:
face_detectors['retinaface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
face_detectors['scrfd'] = onnxruntime.InferenceSession(MODELS.get('face_detector_scrfd').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
face_detectors['yoloface'] = onnxruntime.InferenceSession(MODELS.get('face_detector_yoloface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_detector_model in [ 'yunet' ]:
face_detectors['yunet'] = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0))
if facefusion.globals.face_recognizer_model == 'arcface_blendswap':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_simswap':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
if facefusion.globals.face_recognizer_model == 'arcface_uniface':
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_uniface').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
face_landmarkers['68'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
face_landmarkers['68_5'] = onnxruntime.InferenceSession(MODELS.get('face_landmarker_68_5').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = apply_execution_provider_options(facefusion.globals.execution_providers))
FACE_ANALYSER =\
{
'face_detectors': face_detectors,
'face_recognizer': face_recognizer,
'face_landmarkers': face_landmarkers,
'gender_age': gender_age
}
return FACE_ANALYSER
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_urls =\
[
MODELS.get('face_landmarker_68').get('url'),
MODELS.get('face_landmarker_68_5').get('url'),
MODELS.get('gender_age').get('url')
]
model_paths =\
[
MODELS.get('face_landmarker_68').get('path'),
MODELS.get('face_landmarker_68_5').get('path'),
MODELS.get('gender_age').get('path')
]
if facefusion.globals.face_detector_model in [ 'many', 'retinaface' ]:
model_urls.append(MODELS.get('face_detector_retinaface').get('url'))
model_paths.append(MODELS.get('face_detector_retinaface').get('path'))
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
model_urls.append(MODELS.get('face_detector_scrfd').get('url'))
model_paths.append(MODELS.get('face_detector_scrfd').get('path'))
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
model_urls.append(MODELS.get('face_detector_yoloface').get('url'))
model_paths.append(MODELS.get('face_detector_yoloface').get('path'))
if facefusion.globals.face_detector_model in [ 'yunet' ]:
model_urls.append(MODELS.get('face_detector_yunet').get('url'))
model_paths.append(MODELS.get('face_detector_yunet').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_blendswap':
model_urls.append(MODELS.get('face_recognizer_arcface_blendswap').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_blendswap').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
model_urls.append(MODELS.get('face_recognizer_arcface_inswapper').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_inswapper').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_simswap':
model_urls.append(MODELS.get('face_recognizer_arcface_simswap').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_simswap').get('path'))
if facefusion.globals.face_recognizer_model == 'arcface_uniface':
model_urls.append(MODELS.get('face_recognizer_arcface_uniface').get('url'))
model_paths.append(MODELS.get('face_recognizer_arcface_uniface').get('path'))
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, model_urls)
process_manager.end()
return all(is_file(model_path) for model_path in model_paths)
def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('retinaface')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
feature_strides = [ 8, 16, 32 ]
feature_map_channel = 3
anchor_total = 2
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
for index, feature_stride in enumerate(feature_strides):
keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
if keep_indices.any():
stride_height = face_detector_height // feature_stride
stride_width = face_detector_width // feature_stride
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
bounding_box_raw = detections[index + feature_map_channel] * feature_stride
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
bounding_box_list.append(numpy.array(
[
bounding_box[0] * ratio_width,
bounding_box[1] * ratio_height,
bounding_box[2] * ratio_width,
bounding_box[3] * ratio_height
]))
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ])
for score in detections[index][keep_indices]:
score_list.append(score[0])
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('scrfd')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
feature_strides = [ 8, 16, 32 ]
feature_map_channel = 3
anchor_total = 2
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
for index, feature_stride in enumerate(feature_strides):
keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
if keep_indices.any():
stride_height = face_detector_height // feature_stride
stride_width = face_detector_width // feature_stride
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
bounding_box_raw = detections[index + feature_map_channel] * feature_stride
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
bounding_box_list.append(numpy.array(
[
bounding_box[0] * ratio_width,
bounding_box[1] * ratio_height,
bounding_box[2] * ratio_width,
bounding_box[3] * ratio_height
]))
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
face_landmark_5_list.append(face_landmark_5 * [ ratio_width, ratio_height ])
for score in detections[index][keep_indices]:
score_list.append(score[0])
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_yoloface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('yoloface')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
bounding_box_list = []
face_landmark_5_list = []
score_list = []
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
with thread_semaphore():
detections = face_detector.run(None,
{
face_detector.get_inputs()[0].name: detect_vision_frame
})
detections = numpy.squeeze(detections).T
bounding_box_raw, score_raw, face_landmark_5_raw = numpy.split(detections, [ 4, 5 ], axis = 1)
keep_indices = numpy.where(score_raw > facefusion.globals.face_detector_score)[0]
if keep_indices.any():
bounding_box_raw, face_landmark_5_raw, score_raw = bounding_box_raw[keep_indices], face_landmark_5_raw[keep_indices], score_raw[keep_indices]
for bounding_box in bounding_box_raw:
bounding_box_list.append(numpy.array(
[
(bounding_box[0] - bounding_box[2] / 2) * ratio_width,
(bounding_box[1] - bounding_box[3] / 2) * ratio_height,
(bounding_box[0] + bounding_box[2] / 2) * ratio_width,
(bounding_box[1] + bounding_box[3] / 2) * ratio_height
]))
face_landmark_5_raw[:, 0::3] = (face_landmark_5_raw[:, 0::3]) * ratio_width
face_landmark_5_raw[:, 1::3] = (face_landmark_5_raw[:, 1::3]) * ratio_height
for face_landmark_5 in face_landmark_5_raw:
face_landmark_5_list.append(numpy.array(face_landmark_5.reshape(-1, 3)[:, :2]))
score_list = score_raw.ravel().tolist()
return bounding_box_list, face_landmark_5_list, score_list
def detect_with_yunet(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[FaceLandmark5], List[Score]]:
face_detector = get_face_analyser().get('face_detectors').get('yunet')
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
bounding_box_list = []
face_landmark_5_list = []
score_list = []
face_detector.setInputSize((temp_vision_frame.shape[1], temp_vision_frame.shape[0]))
face_detector.setScoreThreshold(facefusion.globals.face_detector_score)
with thread_semaphore():
_, detections = face_detector.detect(temp_vision_frame)
if numpy.any(detections):
for detection in detections:
bounding_box_list.append(numpy.array(
[
detection[0] * ratio_width,
detection[1] * ratio_height,
(detection[0] + detection[2]) * ratio_width,
(detection[1] + detection[3]) * ratio_height
]))
face_landmark_5_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height ])
score_list.append(detection[14])
return bounding_box_list, face_landmark_5_list, score_list
def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame:
face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame
detect_vision_frame = (detect_vision_frame - 127.5) / 128.0
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return detect_vision_frame
def create_faces(vision_frame : VisionFrame, bounding_box_list : List[BoundingBox], face_landmark_5_list : List[FaceLandmark5], score_list : List[Score]) -> List[Face]:
faces = []
if facefusion.globals.face_detector_score > 0:
sort_indices = numpy.argsort(-numpy.array(score_list))
bounding_box_list = [ bounding_box_list[index] for index in sort_indices ]
face_landmark_5_list = [face_landmark_5_list[index] for index in sort_indices]
score_list = [ score_list[index] for index in sort_indices ]
iou_threshold = 0.1 if facefusion.globals.face_detector_model == 'many' else 0.4
keep_indices = apply_nms(bounding_box_list, iou_threshold)
for index in keep_indices:
bounding_box = bounding_box_list[index]
face_landmark_5_68 = face_landmark_5_list[index]
face_landmark_68_5 = expand_face_landmark_68_from_5(face_landmark_5_68)
face_landmark_68 = face_landmark_68_5
face_landmark_68_score = 0.0
if facefusion.globals.face_landmarker_score > 0:
face_landmark_68, face_landmark_68_score = detect_face_landmark_68(vision_frame, bounding_box)
if face_landmark_68_score > facefusion.globals.face_landmarker_score:
face_landmark_5_68 = convert_face_landmark_68_to_5(face_landmark_68)
landmarks : FaceLandmarkSet =\
{
'5': face_landmark_5_list[index],
'5/68': face_landmark_5_68,
'68': face_landmark_68,
'68/5': face_landmark_68_5
}
scores : FaceScoreSet = \
{
'detector': score_list[index],
'landmarker': face_landmark_68_score
}
embedding, normed_embedding = calc_embedding(vision_frame, landmarks.get('5/68'))
gender, age = detect_gender_age(vision_frame, bounding_box)
faces.append(Face(
bounding_box = bounding_box,
landmarks = landmarks,
scores = scores,
embedding = embedding,
normed_embedding = normed_embedding,
gender = gender,
age = age
))
return faces
def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
face_recognizer = get_face_analyser().get('face_recognizer')
crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112))
crop_vision_frame = crop_vision_frame / 127.5 - 1
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
embedding = face_recognizer.run(None,
{
face_recognizer.get_inputs()[0].name: crop_vision_frame
})[0]
embedding = embedding.ravel()
normed_embedding = embedding / numpy.linalg.norm(embedding)
return embedding, normed_embedding
def detect_face_landmark_68(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[FaceLandmark68, Score]:
face_landmarker = get_face_analyser().get('face_landmarkers').get('68')
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max()
translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256))
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab)
if numpy.mean(crop_vision_frame[:, :, 0]) < 30:
crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0])
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB)
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0
with conditional_thread_semaphore(facefusion.globals.execution_providers):
face_landmark_68, face_heatmap = face_landmarker.run(None,
{
face_landmarker.get_inputs()[0].name: [ crop_vision_frame ]
})
face_landmark_68 = face_landmark_68[:, :, :2][0] / 64
face_landmark_68 = face_landmark_68.reshape(1, -1, 2) * 256
face_landmark_68 = cv2.transform(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
face_landmark_68 = face_landmark_68.reshape(-1, 2)
face_landmark_68_score = numpy.amax(face_heatmap, axis = (2, 3))
face_landmark_68_score = numpy.mean(face_landmark_68_score)
return face_landmark_68, face_landmark_68_score
def expand_face_landmark_68_from_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68:
face_landmarker = get_face_analyser().get('face_landmarkers').get('68_5')
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1))
face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
face_landmark_68_5 = face_landmarker.run(None,
{
face_landmarker.get_inputs()[0].name: [ face_landmark_5 ]
})[0][0]
face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2)
return face_landmark_68_5
def detect_gender_age(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[int, int]:
gender_age = get_face_analyser().get('gender_age')
bounding_box = bounding_box.reshape(2, -1)
scale = 64 / numpy.subtract(*bounding_box[::-1]).max()
translation = 48 - bounding_box.sum(axis = 0) * scale * 0.5
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (96, 96))
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
with conditional_thread_semaphore(facefusion.globals.execution_providers):
prediction = gender_age.run(None,
{
gender_age.get_inputs()[0].name: crop_vision_frame
})[0][0]
gender = int(numpy.argmax(prediction[:2]))
age = int(numpy.round(prediction[2] * 100))
return gender, age
def get_one_face(vision_frame : VisionFrame, position : int = 0) -> Optional[Face]:
many_faces = get_many_faces(vision_frame)
if many_faces:
try:
return many_faces[position]
except IndexError:
return many_faces[-1]
return None
def get_average_face(vision_frames : List[VisionFrame], position : int = 0) -> Optional[Face]:
average_face = None
faces = []
embedding_list = []
normed_embedding_list = []
for vision_frame in vision_frames:
face = get_one_face(vision_frame, position)
if face:
faces.append(face)
embedding_list.append(face.embedding)
normed_embedding_list.append(face.normed_embedding)
if faces:
first_face = get_first(faces)
average_face = Face(
bounding_box = first_face.bounding_box,
landmarks = first_face.landmarks,
scores = first_face.scores,
embedding = numpy.mean(embedding_list, axis = 0),
normed_embedding = numpy.mean(normed_embedding_list, axis = 0),
gender = first_face.gender,
age = first_face.age
)
return average_face
def get_many_faces(vision_frame : VisionFrame) -> List[Face]:
faces = []
try:
faces_cache = get_static_faces(vision_frame)
if faces_cache:
faces = faces_cache
else:
bounding_box_list = []
face_landmark_5_list = []
score_list = []
if facefusion.globals.face_detector_model in [ 'many', 'retinaface']:
bounding_box_list_retinaface, face_landmark_5_list_retinaface, score_list_retinaface = detect_with_retinaface(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_retinaface)
face_landmark_5_list.extend(face_landmark_5_list_retinaface)
score_list.extend(score_list_retinaface)
if facefusion.globals.face_detector_model in [ 'many', 'scrfd' ]:
bounding_box_list_scrfd, face_landmark_5_list_scrfd, score_list_scrfd = detect_with_scrfd(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_scrfd)
face_landmark_5_list.extend(face_landmark_5_list_scrfd)
score_list.extend(score_list_scrfd)
if facefusion.globals.face_detector_model in [ 'many', 'yoloface' ]:
bounding_box_list_yoloface, face_landmark_5_list_yoloface, score_list_yoloface = detect_with_yoloface(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_yoloface)
face_landmark_5_list.extend(face_landmark_5_list_yoloface)
score_list.extend(score_list_yoloface)
if facefusion.globals.face_detector_model in [ 'yunet' ]:
bounding_box_list_yunet, face_landmark_5_list_yunet, score_list_yunet = detect_with_yunet(vision_frame, facefusion.globals.face_detector_size)
bounding_box_list.extend(bounding_box_list_yunet)
face_landmark_5_list.extend(face_landmark_5_list_yunet)
score_list.extend(score_list_yunet)
if bounding_box_list and face_landmark_5_list and score_list:
faces = create_faces(vision_frame, bounding_box_list, face_landmark_5_list, score_list)
if faces:
set_static_faces(vision_frame, faces)
if facefusion.globals.face_analyser_order:
faces = sort_by_order(faces, facefusion.globals.face_analyser_order)
if facefusion.globals.face_analyser_age:
faces = filter_by_age(faces, facefusion.globals.face_analyser_age)
if facefusion.globals.face_analyser_gender:
faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender)
except (AttributeError, ValueError):
pass
return faces
def find_similar_faces(reference_faces : FaceSet, vision_frame : VisionFrame, face_distance : float) -> List[Face]:
similar_faces : List[Face] = []
many_faces = get_many_faces(vision_frame)
if reference_faces:
for reference_set in reference_faces:
if not similar_faces:
for reference_face in reference_faces[reference_set]:
for face in many_faces:
if compare_faces(face, reference_face, face_distance):
similar_faces.append(face)
return similar_faces
def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool:
current_face_distance = calc_face_distance(face, reference_face)
return current_face_distance < face_distance
def calc_face_distance(face : Face, reference_face : Face) -> float:
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
return 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
return 0
def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]:
if order == 'left-right':
return sorted(faces, key = lambda face: face.bounding_box[0])
if order == 'right-left':
return sorted(faces, key = lambda face: face.bounding_box[0], reverse = True)
if order == 'top-bottom':
return sorted(faces, key = lambda face: face.bounding_box[1])
if order == 'bottom-top':
return sorted(faces, key = lambda face: face.bounding_box[1], reverse = True)
if order == 'small-large':
return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]))
if order == 'large-small':
return sorted(faces, key = lambda face: (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]), reverse = True)
if order == 'best-worst':
return sorted(faces, key = lambda face: face.scores.get('detector'), reverse = True)
if order == 'worst-best':
return sorted(faces, key = lambda face: face.scores.get('detector'))
return faces
def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]:
filter_faces = []
for face in faces:
if categorize_age(face.age) == age:
filter_faces.append(face)
return filter_faces
def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]:
filter_faces = []
for face in faces:
if categorize_gender(face.gender) == gender:
filter_faces.append(face)
return filter_faces
|