File size: 7,581 Bytes
e7cae83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from typing import Optional, List, Tuple
from functools import lru_cache
import cv2
import numpy
from cv2.typing import Size

from facefusion.typing import VisionFrame, Resolution, Fps
from facefusion.choices import image_template_sizes, video_template_sizes
from facefusion.filesystem import is_image, is_video


@lru_cache(maxsize = 128)
def read_static_image(image_path : str) -> Optional[VisionFrame]:
	return read_image(image_path)


def read_static_images(image_paths : List[str]) -> Optional[List[VisionFrame]]:
	frames = []
	if image_paths:
		for image_path in image_paths:
			frames.append(read_static_image(image_path))
	return frames


def read_image(image_path : str) -> Optional[VisionFrame]:
	if is_image(image_path):
		return cv2.imread(image_path)
	return None


def write_image(image_path : str, vision_frame : VisionFrame) -> bool:
	if image_path:
		return cv2.imwrite(image_path, vision_frame)
	return False


def detect_image_resolution(image_path : str) -> Optional[Resolution]:
	if is_image(image_path):
		image = read_image(image_path)
		height, width = image.shape[:2]
		return width, height
	return None


def restrict_image_resolution(image_path : str, resolution : Resolution) -> Resolution:
	if is_image(image_path):
		image_resolution = detect_image_resolution(image_path)
		if image_resolution < resolution:
			return image_resolution
	return resolution


def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[VisionFrame]:
	if is_video(video_path):
		video_capture = cv2.VideoCapture(video_path)
		if video_capture.isOpened():
			frame_total = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
			video_capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
			has_vision_frame, vision_frame = video_capture.read()
			video_capture.release()
			if has_vision_frame:
				return vision_frame
	return None


def create_image_resolutions(resolution : Resolution) -> List[str]:
	resolutions = []
	temp_resolutions = []

	if resolution:
		width, height = resolution
		temp_resolutions.append(normalize_resolution(resolution))
		for template_size in image_template_sizes:
			temp_resolutions.append(normalize_resolution((width * template_size, height * template_size)))
		temp_resolutions = sorted(set(temp_resolutions))
		for temp_resolution in temp_resolutions:
			resolutions.append(pack_resolution(temp_resolution))
	return resolutions


def count_video_frame_total(video_path : str) -> int:
	if is_video(video_path):
		video_capture = cv2.VideoCapture(video_path)
		if video_capture.isOpened():
			video_frame_total = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
			video_capture.release()
			return video_frame_total
	return 0


def detect_video_fps(video_path : str) -> Optional[float]:
	if is_video(video_path):
		video_capture = cv2.VideoCapture(video_path)
		if video_capture.isOpened():
			video_fps = video_capture.get(cv2.CAP_PROP_FPS)
			video_capture.release()
			return video_fps
	return None


def restrict_video_fps(video_path : str, fps : Fps) -> Fps:
	if is_video(video_path):
		video_fps = detect_video_fps(video_path)
		if video_fps < fps:
			return video_fps
	return fps


def detect_video_resolution(video_path : str) -> Optional[Resolution]:
	if is_video(video_path):
		video_capture = cv2.VideoCapture(video_path)
		if video_capture.isOpened():
			width = video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)
			height = video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
			video_capture.release()
			return int(width), int(height)
	return None


def restrict_video_resolution(video_path : str, resolution : Resolution) -> Resolution:
	if is_video(video_path):
		video_resolution = detect_video_resolution(video_path)
		if video_resolution < resolution:
			return video_resolution
	return resolution


def create_video_resolutions(resolution : Resolution) -> List[str]:
	resolutions = []
	temp_resolutions = []

	if resolution:
		width, height = resolution
		temp_resolutions.append(normalize_resolution(resolution))
		for template_size in video_template_sizes:
			if width > height:
				temp_resolutions.append(normalize_resolution((template_size * width / height, template_size)))
			else:
				temp_resolutions.append(normalize_resolution((template_size, template_size * height / width)))
		temp_resolutions = sorted(set(temp_resolutions))
		for temp_resolution in temp_resolutions:
			resolutions.append(pack_resolution(temp_resolution))
	return resolutions


def normalize_resolution(resolution : Tuple[float, float]) -> Resolution:
	width, height = resolution

	if width and height:
		normalize_width = round(width / 2) * 2
		normalize_height = round(height / 2) * 2
		return normalize_width, normalize_height
	return 0, 0


def pack_resolution(resolution : Resolution) -> str:
	width, height = normalize_resolution(resolution)
	return str(width) + 'x' + str(height)


def unpack_resolution(resolution : str) -> Resolution:
	width, height = map(int, resolution.split('x'))
	return width, height


def resize_frame_resolution(vision_frame : VisionFrame, max_resolution : Resolution) -> VisionFrame:
	height, width = vision_frame.shape[:2]
	max_width, max_height = max_resolution

	if height > max_height or width > max_width:
		scale = min(max_height / height, max_width / width)
		new_width = int(width * scale)
		new_height = int(height * scale)
		return cv2.resize(vision_frame, (new_width, new_height))
	return vision_frame


def normalize_frame_color(vision_frame : VisionFrame) -> VisionFrame:
	return cv2.cvtColor(vision_frame, cv2.COLOR_BGR2RGB)


def create_tile_frames(vision_frame : VisionFrame, size : Size) -> Tuple[List[VisionFrame], int, int]:
	vision_frame = numpy.pad(vision_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
	tile_width = size[0] - 2 * size[2]
	pad_size_bottom = size[2] + tile_width - vision_frame.shape[0] % tile_width
	pad_size_right = size[2] + tile_width - vision_frame.shape[1] % tile_width
	pad_vision_frame = numpy.pad(vision_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0)))
	pad_height, pad_width = pad_vision_frame.shape[:2]
	row_range = range(size[2], pad_height - size[2], tile_width)
	col_range = range(size[2], pad_width - size[2], tile_width)
	tile_vision_frames = []

	for row_vision_frame in row_range:
		top = row_vision_frame - size[2]
		bottom = row_vision_frame + size[2] + tile_width
		for column_vision_frame in col_range:
			left = column_vision_frame - size[2]
			right = column_vision_frame + size[2] + tile_width
			tile_vision_frames.append(pad_vision_frame[top:bottom, left:right, :])
	return tile_vision_frames, pad_width, pad_height


def merge_tile_frames(tile_vision_frames : List[VisionFrame], temp_width : int, temp_height : int, pad_width : int, pad_height : int, size : Size) -> VisionFrame:
	merge_vision_frame = numpy.zeros((pad_height, pad_width, 3)).astype(numpy.uint8)
	tile_width = tile_vision_frames[0].shape[1] - 2 * size[2]
	tiles_per_row = min(pad_width // tile_width, len(tile_vision_frames))

	for index, tile_vision_frame in enumerate(tile_vision_frames):
		tile_vision_frame = tile_vision_frame[size[2]:-size[2], size[2]:-size[2]]
		row_index = index // tiles_per_row
		col_index = index % tiles_per_row
		top = row_index * tile_vision_frame.shape[0]
		bottom = top + tile_vision_frame.shape[0]
		left = col_index * tile_vision_frame.shape[1]
		right = left + tile_vision_frame.shape[1]
		merge_vision_frame[top:bottom, left:right, :] = tile_vision_frame
	merge_vision_frame = merge_vision_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :]
	return merge_vision_frame