File size: 6,880 Bytes
e7cae83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from typing import Any, Tuple, List
from cv2.typing import Size
from functools import lru_cache
import cv2
import numpy

from facefusion.typing import BoundingBox, FaceLandmark5, FaceLandmark68, VisionFrame, Mask, Matrix, Translation, WarpTemplate, WarpTemplateSet, FaceAnalyserAge, FaceAnalyserGender

WARP_TEMPLATES : WarpTemplateSet =\
{
	'arcface_112_v1': numpy.array(
	[
		[ 0.35473214, 0.45658929 ],
		[ 0.64526786, 0.45658929 ],
		[ 0.50000000, 0.61154464 ],
		[ 0.37913393, 0.77687500 ],
		[ 0.62086607, 0.77687500 ]
	]),
	'arcface_112_v2': numpy.array(
	[
		[ 0.34191607, 0.46157411 ],
		[ 0.65653393, 0.45983393 ],
		[ 0.50022500, 0.64050536 ],
		[ 0.37097589, 0.82469196 ],
		[ 0.63151696, 0.82325089 ]
	]),
	'arcface_128_v2': numpy.array(
	[
		[ 0.36167656, 0.40387734 ],
		[ 0.63696719, 0.40235469 ],
		[ 0.50019687, 0.56044219 ],
		[ 0.38710391, 0.72160547 ],
		[ 0.61507734, 0.72034453 ]
	]),
	'ffhq_512': numpy.array(
	[
		[ 0.37691676, 0.46864664 ],
		[ 0.62285697, 0.46912813 ],
		[ 0.50123859, 0.61331904 ],
		[ 0.39308822, 0.72541100 ],
		[ 0.61150205, 0.72490465 ]
	])
}


def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
	normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size
	affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
	return affine_matrix


def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
	return crop_vision_frame, affine_matrix


def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
	target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
	affine_matrix = cv2.getAffineTransform(source_points, target_points)
	if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
		interpolation_method = cv2.INTER_AREA
	else:
		interpolation_method = cv2.INTER_LINEAR
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
	return crop_vision_frame, affine_matrix


def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
	return crop_vision_frame, affine_matrix


def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
	inverse_matrix = cv2.invertAffineTransform(affine_matrix)
	temp_size = temp_vision_frame.shape[:2][::-1]
	inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1)
	inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE)
	paste_vision_frame = temp_vision_frame.copy()
	paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0]
	paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1]
	paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2]
	return paste_vision_frame


@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
	y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
	anchors = numpy.stack((y, x), axis = -1)
	anchors = (anchors * feature_stride).reshape((-1, 2))
	anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
	return anchors


def create_bounding_box_from_face_landmark_68(face_landmark_68 : FaceLandmark68) -> BoundingBox:
	min_x, min_y = numpy.min(face_landmark_68, axis = 0)
	max_x, max_y = numpy.max(face_landmark_68, axis = 0)
	bounding_box = numpy.array([ min_x, min_y, max_x, max_y ]).astype(numpy.int16)
	return bounding_box


def distance_to_bounding_box(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> BoundingBox:
	x1 = points[:, 0] - distance[:, 0]
	y1 = points[:, 1] - distance[:, 1]
	x2 = points[:, 0] + distance[:, 2]
	y2 = points[:, 1] + distance[:, 3]
	bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
	return bounding_box


def distance_to_face_landmark_5(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> FaceLandmark5:
	x = points[:, 0::2] + distance[:, 0::2]
	y = points[:, 1::2] + distance[:, 1::2]
	face_landmark_5 = numpy.stack((x, y), axis = -1)
	return face_landmark_5


def convert_face_landmark_68_to_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
	face_landmark_5 = numpy.array(
	[
		numpy.mean(face_landmark_68[36:42], axis = 0),
		numpy.mean(face_landmark_68[42:48], axis = 0),
		face_landmark_68[30],
		face_landmark_68[48],
		face_landmark_68[54]
	])
	return face_landmark_5


def apply_nms(bounding_box_list : List[BoundingBox], iou_threshold : float) -> List[int]:
	keep_indices = []
	dimension_list = numpy.reshape(bounding_box_list, (-1, 4))
	x1 = dimension_list[:, 0]
	y1 = dimension_list[:, 1]
	x2 = dimension_list[:, 2]
	y2 = dimension_list[:, 3]
	areas = (x2 - x1 + 1) * (y2 - y1 + 1)
	indices = numpy.arange(len(bounding_box_list))
	while indices.size > 0:
		index = indices[0]
		remain_indices = indices[1:]
		keep_indices.append(index)
		xx1 = numpy.maximum(x1[index], x1[remain_indices])
		yy1 = numpy.maximum(y1[index], y1[remain_indices])
		xx2 = numpy.minimum(x2[index], x2[remain_indices])
		yy2 = numpy.minimum(y2[index], y2[remain_indices])
		width = numpy.maximum(0, xx2 - xx1 + 1)
		height = numpy.maximum(0, yy2 - yy1 + 1)
		iou = width * height / (areas[index] + areas[remain_indices] - width * height)
		indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
	return keep_indices


def categorize_age(age : int) -> FaceAnalyserAge:
	if age < 13:
		return 'child'
	elif age < 19:
		return 'teen'
	elif age < 60:
		return 'adult'
	return 'senior'


def categorize_gender(gender : int) -> FaceAnalyserGender:
	if gender == 0:
		return 'female'
	return 'male'