File size: 8,196 Bytes
b037807
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b78f4
b037807
a0b78f4
 
 
 
3834e87
 
a0b78f4
 
 
 
 
 
 
 
3834e87
b037807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b78f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b037807
 
 
 
 
 
 
 
 
 
 
 
 
a0b78f4
 
 
 
 
 
 
b037807
 
 
a0b78f4
b037807
 
 
 
a0b78f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from __future__ import annotations

import re
from collections import Counter, namedtuple
from typing import Iterable
from tqdm.auto import tqdm
from . import classifier
from . import merger
from errant.annotator import Annotator
from errant.commands.compare_m2 import process_edits
from errant.commands.compare_m2 import evaluate_edits
from errant.commands.compare_m2 import merge_dict
from errant.edit import Edit
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, compile_infix_regex, compile_suffix_regex

import evaluate
import datasets

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""

# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


def update_spacy_tokenizer(nlp):
    """
    Changes Spacy tokenizer to parse additional patterns.
    """
    infix_re = compile_infix_regex(nlp.Defaults.infixes[:-1] + ["\]\("])
    simple_url_re = re.compile(r'''^https?://''')
    nlp.tokenizer = Tokenizer(
        nlp.vocab,
        prefix_search=compile_prefix_regex(nlp.Defaults.prefixes + ['\\\\\"']).search,
        suffix_search=compile_suffix_regex(nlp.Defaults.suffixes + ['\\\\']).search,
        infix_finditer=infix_re.finditer,
        token_match=None,
        url_match=simple_url_re.match
    )
    return nlp


def annotate_errors(self, orig: str, cor: str, merging: str = "rules") -> list[Edit]:
    """
        Overrides `Annotator.annotate()` function to allow multiple errors per token.
        This is nesessary to parse combined errors, e.g.:
            ["werd", "Word"] >>> Errors: ["SPELL", "CASE"]
        The `classify()` method called inside is implemented in ruerrant_classifier.py
        (also overrides the original classifier).
    """

    alignment = self.annotator.align(orig, cor, False)
    edits = self.annotator.merge(alignment, merging)
    classified_edits = []
    for edit in edits:
        classified_edits.extend(self.annotator.classify(edit))
    return sorted(classified_edits, key=lambda x: (x[0], x[2]))


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class RuErrant(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "sources": datasets.Value("string", id="sequence"),
                    "corrections": datasets.Value("string", id="sequence"),
                    "answers": datasets.Value("string", id="sequence"),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/ai-forever/sage"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        self.annotator = Annotator("ru",
                                   nlp=update_spacy_tokenizer(spacy.load("ru_core_news_lg")),
                                   merger=merger,
                                   classifier=classifier)

    def _compute(self, sources, corrections, answers):
        """
        Evaluates iterables of sources, hyp and ref corrections with ERRANT metric.

        Args:
            sources (Iterable[str]): an iterable of source texts;
            corrections (Iterable[str]): an iterable of gold corrections for the source texts;
            answers (Iterable[str]): an iterable of evaluated corrections for the source texts;

        Returns:
            dict[str, tuple[float, ...]]: a dict mapping error categories to the corresponding
            P, R, F1 metric values.
        """
        best_dict = Counter({"tp": 0, "fp": 0, "fn": 0})
        best_cats = {}
        sents = zip(sources, corrections, answers)
        pb = tqdm(sents, desc="Calculating errant metric", total=len(sources))
        for sent_id, sent in enumerate(pb):
            src = self.annotator.parse(sent[0])
            ref = self.annotator.parse(sent[1])
            hyp = self.annotator.parse(sent[2])
            # Align hyp and ref corrections and annotate errors
            hyp_edits = self.annotate_errors(src, hyp)
            ref_edits = self.annotate_errors(src, ref)
            # Process the edits for detection/correction based on args
            ProcessingArgs = namedtuple("ProcessingArgs",
                                        ["dt", "ds", "single", "multi", "filt", "cse"],
                                        defaults=[False, False, False, False, [], True])
            processing_args = ProcessingArgs()
            hyp_dict = process_edits(hyp_edits, processing_args)
            ref_dict = process_edits(ref_edits, processing_args)
            # Evaluate edits and get best TP, FP, FN hyp+ref combo.
            EvaluationArgs = namedtuple("EvaluationArgs",
                                        ["beta", "verbose"],
                                        defaults=[1.0, False])
            evaluation_args = EvaluationArgs()
            count_dict, cat_dict = evaluate_edits(
                hyp_dict, ref_dict, best_dict, sent_id, evaluation_args)
            # Merge these dicts with best_dict and best_cats
            best_dict += Counter(count_dict)  # corpus-level TP, FP, FN
            best_cats = merge_dict(best_cats, cat_dict)  # corpus-level errortype-wise TP, FP, FN
        cat_prf = {}
        for cat, values in best_cats.items():
            tp, fp, fn = values  # fp - extra corrections, fn - missed corrections
            p = float(tp) / (tp + fp) if tp + fp else 1.0
            r = float(tp) / (tp + fn) if tp + fn else 1.0
            f = (2 * p * r) / (p + r) if p + r else 0.0
            cat_prf[cat] = (p, r, f)

        for error_category in ["CASE", "PUNCT", "SPELL", "YO"]:
            if error_category not in cat_prf:
                cat_prf[error_category] = (1.0, 1.0, 1.0)

        return cat_prf