File size: 5,605 Bytes
b14db6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa23921
 
 
 
 
 
 
 
 
 
 
 
 
 
b14db6d
 
 
 
 
 
 
 
 
 
 
 
 
fa23921
b14db6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Linear, Identity, Module


def default(v, d):
    return v if exists(v) else d
    
def exists(v):
    return v is not None

def heinsen_associative_scan_log(log_coeffs, log_values):
    a_star = log_coeffs.cumsum(dim=1)
    log_h0_plus_b_star = (log_values - a_star).logcumsumexp(dim=1)
    log_h = a_star + log_h0_plus_b_star
    return log_h.exp()

def log_g(x):
    return torch.where(x >= 0, (F.relu(x) + 0.5).log(), -F.softplus(-x))

class MinGRU(Module):
    def __init__(self, dim, expansion_factor=1.):
        super().__init__()
        dim_inner = int(dim * expansion_factor)
        # Combined transformation for hidden state and gate
        self.to_hidden = Linear(dim, dim_inner, bias=False)
        self.to_gate = Linear(dim,dim_inner,bias=False)
        # Output projection (Identity if no expansion)
        self.to_out = Linear(dim_inner, dim, bias=False) if expansion_factor != 1. else Identity()
    
    def forward(self, x, prev_hidden=None, return_next_prev_hidden=False):
        # Split combined transformation into hidden and gate components
        hidden= self.to_hidden(x)
        gate = self.to_gate(x) 
        # Convert to log space for numerical stability
        log_coeffs = -F.softplus(gate)           # log(1 - σ(gate))
        log_z = -F.softplus(-gate)               # log(σ(gate))
        log_tilde_h = log_g(hidden)              # log(g(hidden))
        log_values = log_z + log_tilde_h         # log(z * h_tilde)
        
        # Handle previous hidden state if it exists
        if exists(prev_hidden):
            log_values = torch.cat((log_g(prev_hidden), log_values), dim=1)
            log_coeffs = F.pad(log_coeffs, (0, 0, 1, 0))
        
        # Apply parallel scan in log space
        out = heinsen_associative_scan_log(log_coeffs, log_values)
        out = out[:, -x.shape[1]:]  # Keep only the relevant sequence length
        
        # Store last hidden state for potential return
        next_prev_hidden = out[:, -1:]
        
        # Apply output projection
        out = self.to_out(out)
        
        if not return_next_prev_hidden:
            return out
        return out, next_prev_hidden


class FeedForward(nn.Module):
    def __init__(self, dim, mult=4):
        super().__init__()
        self.dim_inner = int(dim * mult)
        self.net = nn.Sequential(
            nn.Linear(dim, self.dim_inner),
            nn.GELU(),  
            nn.Linear(self.dim_inner, dim)
        )

    def forward(self, x):
        return self.net(x)

class CausalDepthWiseConv1d(nn.Module):
    def __init__(self, dim, kernel_size):
        super().__init__()
        self.kernel_size = kernel_size
        self.net = nn.Sequential(
            nn.Conv1d(dim, dim, kernel_size = kernel_size, groups = dim),
            nn.Conv1d(dim, dim, kernel_size = 1)
        )
    def forward(self, x):
        x = x.transpose(1, 2) # b n d -> b d n
        x = F.pad(x, (self.kernel_size - 1, 0), value = 0.)
        x = self.net(x)
        return x.transpose(1, 2) # b d n -> b n d

class RMSNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = dim ** 0.5
        self.gamma = nn.Parameter(torch.zeros(dim))

    def forward(self, x):
        return F.normalize(x, dim=-1) * self.scale * (self.gamma + 1)

class MinGRU_Layers(nn.Module):
    def __init__(self, dim, num_tokens):
        super().__init__()
        self.emb = nn.Embedding(num_tokens, dim)
        self.casual_depth = CausalDepthWiseConv1d(dim=dim,kernel_size=3)
        self.rms_norm = RMSNorm(dim)
        self.gru = MinGRU(dim)
        self.ff = FeedForward(dim)
        
        self.norm = RMSNorm(dim)
        self.to_logits = nn.Linear(dim, num_tokens, bias=False)

    def forward(self, inputs, labels=None, is_first_layer=True, prev_hiddens=None):
        if is_first_layer:
            x = self.emb(inputs)
        else:
            x = self.emb(inputs.argmax(dim=-1))
        
        if exists(prev_hiddens):
            x = x[:, -1:]

        next_prev_hiddens = []
        prev_hiddens = iter(default(prev_hiddens, []))

        x = self.rms_norm(x)
        prev_hidden = next(prev_hiddens, None)

        min_gru_out, next_hidden = self.gru(x, prev_hidden, return_next_prev_hidden=True)

        x = min_gru_out + x
        next_prev_hiddens.append(next_hidden)
        x = self.ff(x) + x
        logits = self.to_logits(self.norm(x))

        if labels is not None:
            loss = F.cross_entropy(logits.transpose(1, 2), labels)
        else:
            loss = None

        return loss, logits, next_prev_hiddens

class MinGRU_LM(nn.Module):
    def __init__(self, dim, num_tokens, num_layers):
        super().__init__()
        self.layers = nn.ModuleList([MinGRU_Layers(dim, num_tokens) for _ in range(num_layers)])

    def forward(self, inputs, labels):
        total_loss = 0
        hidden_states = [None] * len(self.layers)
        current_input = inputs

        for i, layer in enumerate(self.layers):
            loss, logits, next_hiddens = layer(
                inputs=current_input,
                labels=labels,
                is_first_layer=(i == 0),
                prev_hiddens=hidden_states[i]
            )
            
            if loss is not None:
                total_loss += loss
                
            current_input = logits  # Use the logits as input for the next layer
            hidden_states[i] = next_hiddens

        return total_loss / len(self.layers), logits