Spaces:
Runtime error
Runtime error
File size: 27,811 Bytes
6fe8715 8a5a3f1 6fe8715 aaa98a9 6fe8715 b93cb59 3b90fa6 01460fc da1160a 8eb2700 ff585c2 6fe8715 8a5a3f1 8eb2700 8a5a3f1 ce44ad1 fe6597f 6fe8715 ce44ad1 6fe8715 ce44ad1 8958900 6fe8715 8a5a3f1 6fe8715 8958900 6fe8715 ce44ad1 6fe8715 a123bdd 6fe8715 a123bdd 6fe8715 8a5a3f1 ce44ad1 8a5a3f1 161a311 8a5a3f1 ce44ad1 8a5a3f1 ce44ad1 8a5a3f1 c816c37 8a5a3f1 8939390 8a5a3f1 8d05170 8a5a3f1 a18e2f3 7dd5e48 a18e2f3 8a5a3f1 4e8fdc8 8a5a3f1 4e8fdc8 8a5a3f1 4e8fdc8 8a5a3f1 4e8fdc8 8a5a3f1 f3bf5f2 8a5a3f1 fe6597f 8a5a3f1 fe6597f 8a5a3f1 161a311 8a5a3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gspreadcon = init_conn()
master_hold = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=195454038'
prop_table_options = ['SOG', 'points', 'blocked_shots', 'assists']
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['SOG', 'points', 'blocked_shots', 'assists']
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
@st.cache_resource(ttl=300)
def pull_baselines():
sh = gspreadcon.open_by_url(master_hold)
worksheet = sh.worksheet('Prop_Betting_Table')
raw_display = pd.DataFrame(worksheet.get_all_records())
prop_display = raw_display.loc[raw_display['Player'] != ""]
prop_display['Player Blocks'].replace("", np.nan, inplace=True)
prop_display['SOG Edge'].replace("", np.nan, inplace=True)
prop_display['Assist Edge'].replace("", np.nan, inplace=True)
prop_display['TP Edge'].replace("", np.nan, inplace=True)
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
'Player TP', 'Player Blocks', 'Player Saves']]
prop_table['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
prop_table['Player'] = prop_table['Player'].str.strip()
worksheet = sh.worksheet('prop_trends')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
prop_trends = raw_display.dropna(subset='Player')
prop_trends['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
worksheet = sh.worksheet('Pick6_ingest')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
pick_frame = raw_display.dropna(subset='Player')
pick_frame['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
team_dict = dict(zip(prop_table['Player'], prop_table['Team']))
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
return prop_table, prop_trends, pick_frame, timestamp, team_dict
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
prop_display, prop_trends, pick_frame, timestamp, team_dict = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, timestamp, team_dict = pull_baselines()
prop_frame = prop_display
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Table",
data=convert_df_to_csv(prop_frame),
file_name='NHL_prop_stat_export.csv',
mime='text/csv',
key='prop_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, timestamp, team_dict = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = prop_trends.Team.values.tolist()
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
prop_frame_disp = prop_frame_disp.set_index('Player')
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame_disp),
file_name='NHL_prop_trends_export.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, timestamp, team_dict = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Draftkings', 'Pick6'])
if game_select_var == 'Draftkings':
prop_df = prop_trends[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='Nba_prop_source.csv',
mime='text/csv',
key='prop_source',
)
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'SOG', 'points', 'blocked_shots', 'assists'])
if prop_type_var == 'All Props':
st.info('please note that the All Props run can take some time, you will see progress as tables show up in the sim area to the right')
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == 'All Props':
for prop in all_sim_vars:
if game_select_var == 'Draftkings':
prop_df = prop_trends[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
if len(prop_df) > 0:
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop == 'points':
df['Median'] = df['Player TP']
elif prop == 'SOG':
df['Median'] = df['Player SOG']
elif prop == 'assists':
df['Median'] = df['Player Assists']
elif prop == 'blocked_shots':
df['Median'] = df['Player Blocks']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .85)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
elif prop_type_var != 'All Props':
if game_select_var == 'Draftkings':
prop_df = prop_trends[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
if prop_type_var == "SOG":
prop_df = prop_df.loc[prop_df['prop_type'] == 'SOG']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
prop = 'SOG'
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "points":
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
prop = 'points'
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "assists":
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
prop = 'assists'
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "blocked_shots":
prop_df = prop_df.loc[prop_df['prop_type'] == 'blocked_shots']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
prop = 'blocked_shots'
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
st.table(df)
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop == 'points':
df['Median'] = df['Player TP']
elif prop == 'SOG':
df['Median'] = df['Player SOG']
elif prop == 'assists':
df['Median'] = df['Player Assists']
elif prop == 'blocked_shots':
df['Median'] = df['Player Blocks']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .85)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
final_outcomes = players_only[['Player', 'Team', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NHL_prop_proj.csv',
mime='text/csv',
key='prop_proj',
) |