dakkoong commited on
Commit
52189cc
·
1 Parent(s): 610bbb8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -47
app.py CHANGED
@@ -8,53 +8,7 @@ model_path = "microsoft/git-base-vqav2"
8
  dataset_name = "Multimodal-Fatima/OK-VQA_train"
9
  tokenizer = AutoTokenizer.from_pretrained(model_path)
10
 
11
- questions = ["What can happen the objects shown are thrown on the ground?",
12
- "What was the machine beside the bowl used for?",
13
- "What kind of cars are in the photo?",
14
- "What is the hairstyle of the blond called?",
15
- "How old do you have to be in canada to do this?",
16
- "Can you guess the place where the man is playing?",
17
- "What loony tune character is in this photo?",
18
- "Whose birthday is being celebrated?",
19
- "Where can that toilet seat be bought?",
20
- "What do you call the kind of pants that the man on the right is wearing?"]
21
-
22
- processor = AutoProcessor.from_pretrained(model_path)
23
- model = AutoModelForVisualQuestionAnswering.from_pretrained(model_path)
24
-
25
-
26
- def main(select_exemple_num):
27
- selectednum = select_exemple_num
28
- exemple_img = f"image{selectednum}.jpg"
29
- img = Image.open(exemple_img)
30
- question = questions[selectednum - 1]
31
-
32
- encoding = processor(img, question, return_tensors='pt')
33
-
34
- outputs = model(**encoding)
35
- logits = outputs.logits
36
-
37
- # ---
38
- output_str = 'pridicted : \n'
39
- predicted_classes = torch.sigmoid(logits)
40
-
41
- probs, classes = torch.topk(predicted_classes, 5)
42
- ans = ''
43
-
44
- for prob, class_idx in zip(probs.squeeze().tolist(), classes.squeeze().tolist()):
45
- print(prob, model.config.id2label[class_idx])
46
- output_str += str(prob)
47
- output_str += " "
48
- output_str += model.config.id2label[class_idx]
49
- output_str += "\n"
50
- if not ans:
51
- ans = model.config.id2label[class_idx]
52
-
53
- print(ans)
54
- # ---
55
- output_str += f"\nso I think it's answer is : \n{ans}"
56
-
57
- return exemple_img, question, output_str
58
 
59
 
60
  demo = gr.Interface(
 
8
  dataset_name = "Multimodal-Fatima/OK-VQA_train"
9
  tokenizer = AutoTokenizer.from_pretrained(model_path)
10
 
11
+ def main():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
 
14
  demo = gr.Interface(