simple-paper-qa / app.py
hfwittmann's picture
Update app.py
6a9b66f
import os
from typing import Any
import gradio as gr
import openai
import pandas as pd
from IPython.display import Markdown, display
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.vectorstores import DocArrayInMemorySearch
from uuid import uuid4
css_style = """
.gradio-container {
font-family: "IBM Plex Mono";
}
"""
class myClass:
def __init__(self) -> None:
self.openapi = ""
self.valid_key = False
self.docs_ready = False
self.status = "⚠️Waiting for documents and key⚠️"
self.uuid = uuid4()
pass
def check_status(self):
if self.docs_ready and self.valid_key:
out = "✨Ready✨"
elif self.docs_ready:
out = "⚠️Waiting for key⚠️"
elif self.valid_key:
out = "⚠️Waiting for documents⚠️"
else:
out = "⚠️Waiting for documents and key⚠️"
self.status = out
def validate_key(self, myin):
assert isinstance(myin, str)
self.valid_key = True
self.openai_api_key = myin.strip()
self.embedding = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
self.llm = OpenAI(openai_api_key=self.openai_api_key)
self.check_status()
return [self.status]
def request_pathname(self, files, data):
if files is None:
self.docs_ready = False
self.check_status()
return (
pd.DataFrame(data, columns=["filepath", "citation string", "key"]),
self.status,
)
for file in files:
# make sure we're not duplicating things in the dataset
if file.name in [x[0] for x in data]:
continue
data.append([file.name, None, None])
mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"])
validation_button = self.validate_dataset(mydataset)
return mydataset, validation_button
def validate_dataset(self, dataset):
self.docs_ready = dataset.iloc[-1, 0] != ""
self.dataset = dataset
self.check_status()
if self.status == "✨Ready✨":
self.get_index()
return self.status
def get_index(self):
if self.docs_ready and self.valid_key:
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
# myfile = "Angela Merkel - Wikipedia.pdf"
# loader = PyPDFLoader(file_path=myfile)
loaders = [PyPDFLoader(f) for f in self.dataset["filepath"]]
self.index = VectorstoreIndexCreator(
vectorstore_cls=DocArrayInMemorySearch,
embedding=self.embedding,
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size = 1000,
chunk_overlap = 20,
length_function = len,
separators="."
)
).from_loaders(loaders=loaders)
# del os.environ["OPENAI_API_KEY"]
pass
def do_ask(self, question):
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
# openai.api_key = self.openai_api_key
if self.status == "✨Ready✨":
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
response = self.index.query(question=question, llm=self.llm)
# del os.environ["OPENAI_API_KEY"]
yield response
pass
def validate_key(myInstance: myClass, openai_api_key):
if myInstance is None:
myInstance = myClass()
out = myInstance.validate_key(openai_api_key)
return myInstance, *out
def request_pathname(myInstance: myClass, files, data):
if myInstance is None:
myInstance = myClass()
out = myInstance.request_pathname(files, data)
return myInstance, *out
def do_ask(myInstance: myClass, question):
out = myInstance.do_ask(question)
return myInstance, *out
with gr.Blocks(css=css_style) as demo:
myInstance = gr.State()
openai_api_key = gr.State("")
docs = gr.State()
data = gr.State([])
index = gr.State()
gr.Markdown(
"""
# Document Question and Answer
*By D8a.ai*
Idea based on https://huggingface.co/spaces/whitead/paper-qa
Significant advances in langchain have made it possible to simplify the code.
This tool allows you to ask questions of your uploaded text, PDF documents.
It uses OpenAI's GPT models, so you need to enter your API key below. This
tool is under active development and currently uses a lot of tokens - up to 10,000
for a single query. This is $0.10-0.20 per query, so please be careful!
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
2. Upload your documents
3. Ask questions
"""
)
openai_api_key = gr.Textbox(
label="OpenAI API Key", placeholder="sk-...", type="password"
)
with gr.Tab("File upload"):
uploaded_files = gr.File(
label="Upload your pdf Dokument", file_count="multiple"
)
with gr.Accordion("See Docs:", open=False):
dataset = gr.Dataframe(
headers=["filepath", "citation string", "key"],
datatype=["str", "str", "str"],
col_count=(3, "fixed"),
interactive=False,
label="Documents and Citations",
overflow_row_behaviour="paginate",
max_rows=5,
)
buildb = gr.Textbox(
"⚠️Waiting for documents and key...",
label="Status",
interactive=False,
show_label=True,
max_lines=1,
)
query = gr.Textbox(placeholder="Enter your question here...", label="Question")
ask = gr.Button("Ask Question")
answer = gr.Markdown(label="Answer")
openai_api_key.change(
validate_key, inputs=[myInstance, openai_api_key], outputs=[myInstance, buildb]
)
uploaded_files.change(
request_pathname,
inputs=[myInstance, uploaded_files, data],
outputs=[myInstance, dataset, buildb],
)
ask.click(
do_ask,
inputs=[myInstance, query],
outputs=[myInstance, answer],
)
demo.queue(concurrency_count=20)
demo.launch(show_error=True)