Spaces:
Runtime error
Runtime error
enhancer
#1
by
d0tpy
- opened
- app.py +46 -2
- image_enhancer.py +123 -0
app.py
CHANGED
|
@@ -1,7 +1,51 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
@app.get("/")
|
| 6 |
def greet_json():
|
| 7 |
-
return {"Initializing GlamApp Enhancer"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import StreamingResponse
|
| 3 |
+
from media_enhancer.image_enhancer import EnhancementMethod, Enhancer
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import base64
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
class EnhancementRequest(BaseModel):
|
| 11 |
+
method: EnhancementMethod = EnhancementMethod.gfpgan
|
| 12 |
+
background_enhancement: bool = True
|
| 13 |
+
upscale: int = 2
|
| 14 |
+
|
| 15 |
+
class _EnhanceBase(BaseModel):
|
| 16 |
+
encoded_base_img: List[str]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
|
| 20 |
app = FastAPI()
|
| 21 |
|
| 22 |
@app.get("/")
|
| 23 |
def greet_json():
|
| 24 |
+
return {"Initializing GlamApp Enhancer"}
|
| 25 |
+
|
| 26 |
+
@app.post("/enhance")
|
| 27 |
+
async def enhance_image(
|
| 28 |
+
file: UploadFile = File(...),
|
| 29 |
+
request: EnhancementRequest = EnhancementRequest()
|
| 30 |
+
):
|
| 31 |
+
try:
|
| 32 |
+
if not file.content_type.startswith('image/'):
|
| 33 |
+
raise HTTPException(status_code=400, detail="Invalid file type")
|
| 34 |
+
|
| 35 |
+
contents = await file.read()
|
| 36 |
+
base64_encoded_image = base64.b64encode(contents).decode('utf-8')
|
| 37 |
+
data = _EnhanceBase(encoded_base_img=[base64_encoded_image])
|
| 38 |
+
|
| 39 |
+
enhancer = Enhancer(request.method, request.background_enhancement, request.upscale)
|
| 40 |
+
|
| 41 |
+
enhanced_img, original_resolution, enhanced_resolution = await enhancer.enhance(data)
|
| 42 |
+
|
| 43 |
+
enhanced_image = Image.fromarray(enhanced_img)
|
| 44 |
+
img_byte_arr = BytesIO()
|
| 45 |
+
enhanced_image.save(img_byte_arr, format='PNG')
|
| 46 |
+
img_byte_arr.seek(0)
|
| 47 |
+
|
| 48 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
raise HTTPException(status_code=500, detail=str(e))
|
image_enhancer.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from gfpgan import GFPGANer
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import cv2
|
| 6 |
+
from realesrgan import RealESRGANer
|
| 7 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 8 |
+
import warnings
|
| 9 |
+
from enum import Enum
|
| 10 |
+
|
| 11 |
+
class EnhancementMethod(str, Enum):
|
| 12 |
+
gfpgan = "gfpgan"
|
| 13 |
+
RestoreFormer = "RestoreFormer"
|
| 14 |
+
codeformer = "codeformer"
|
| 15 |
+
realesrgan = "realesrgan"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Enhancer:
|
| 19 |
+
def __init__(self, method: EnhancementMethod, background_enhancement=True, upscale=2):
|
| 20 |
+
self.method = method
|
| 21 |
+
self.background_enhancement = background_enhancement
|
| 22 |
+
self.upscale = upscale
|
| 23 |
+
self.bg_upsampler = None
|
| 24 |
+
self.realesrgan_enhancer = None
|
| 25 |
+
|
| 26 |
+
if self.method != EnhancementMethod.realesrgan:
|
| 27 |
+
self.setup_face_enhancer()
|
| 28 |
+
if self.background_enhancement:
|
| 29 |
+
self.setup_background_enhancer()
|
| 30 |
+
else:
|
| 31 |
+
self.setup_realesrgan_enhancer()
|
| 32 |
+
|
| 33 |
+
def setup_background_enhancer(self):
|
| 34 |
+
if not torch.cuda.is_available():
|
| 35 |
+
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it.')
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=self.upscale)
|
| 39 |
+
model_path = f'https://huggingface.co/dtarnow/UPscaler/resolve/main/RealESRGAN_x{self.upscale}plus.pth'
|
| 40 |
+
self.bg_upsampler = RealESRGANer(
|
| 41 |
+
scale=self.upscale,
|
| 42 |
+
model_path=model_path,
|
| 43 |
+
model=model,
|
| 44 |
+
tile=400,
|
| 45 |
+
tile_pad=10,
|
| 46 |
+
pre_pad=0,
|
| 47 |
+
half=True)
|
| 48 |
+
|
| 49 |
+
def setup_realesrgan_enhancer(self):
|
| 50 |
+
if not torch.cuda.is_available():
|
| 51 |
+
raise ValueError('CUDA is not available for RealESRGAN')
|
| 52 |
+
|
| 53 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=self.upscale)
|
| 54 |
+
model_path = f'https://huggingface.co/dtarnow/UPscaler/resolve/main/RealESRGAN_x{self.upscale}plus.pth'
|
| 55 |
+
self.realesrgan_enhancer = RealESRGANer(
|
| 56 |
+
scale=self.upscale,
|
| 57 |
+
model_path=model_path,
|
| 58 |
+
model=model,
|
| 59 |
+
tile=400,
|
| 60 |
+
tile_pad=10,
|
| 61 |
+
pre_pad=0,
|
| 62 |
+
half=True)
|
| 63 |
+
|
| 64 |
+
def setup_face_enhancer(self):
|
| 65 |
+
model_configs = {
|
| 66 |
+
EnhancementMethod.gfpgan: {
|
| 67 |
+
'arch': 'clean',
|
| 68 |
+
'channel_multiplier': 2,
|
| 69 |
+
'model_name': 'GFPGANv1.4',
|
| 70 |
+
'url': 'https://huggingface.co/gmk123/GFPGAN/resolve/main/GFPGANv1.4.pth'
|
| 71 |
+
},
|
| 72 |
+
EnhancementMethod.RestoreFormer: {
|
| 73 |
+
'arch': 'RestoreFormer',
|
| 74 |
+
'channel_multiplier': 2,
|
| 75 |
+
'model_name': 'RestoreFormer',
|
| 76 |
+
'url': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
|
| 77 |
+
},
|
| 78 |
+
EnhancementMethod.codeformer: {
|
| 79 |
+
'arch': 'CodeFormer',
|
| 80 |
+
'channel_multiplier': 2,
|
| 81 |
+
'model_name': 'CodeFormer',
|
| 82 |
+
'url': 'https://huggingface.co/sinadi/aar/resolve/main/codeformer.pth'
|
| 83 |
+
}
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
config = model_configs.get(self.method)
|
| 87 |
+
if not config:
|
| 88 |
+
raise ValueError(f'Wrong model version {self.method}')
|
| 89 |
+
|
| 90 |
+
model_path = os.path.join('gfpgan/weights', config['model_name'] + '.pth')
|
| 91 |
+
if not os.path.isfile(model_path):
|
| 92 |
+
model_path = os.path.join('checkpoints', config['model_name'] + '.pth')
|
| 93 |
+
if not os.path.isfile(model_path):
|
| 94 |
+
model_path = config['url']
|
| 95 |
+
|
| 96 |
+
self.face_enhancer = GFPGANer(
|
| 97 |
+
model_path=model_path,
|
| 98 |
+
upscale=self.upscale,
|
| 99 |
+
arch=config['arch'],
|
| 100 |
+
channel_multiplier=config['channel_multiplier'],
|
| 101 |
+
bg_upsampler=self.bg_upsampler)
|
| 102 |
+
|
| 103 |
+
def check_image_resolution(self, image):
|
| 104 |
+
height, width, _ = image.shape
|
| 105 |
+
return width, height
|
| 106 |
+
|
| 107 |
+
async def enhance(self, image):
|
| 108 |
+
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 109 |
+
width, height = self.check_image_resolution(img)
|
| 110 |
+
|
| 111 |
+
if self.method == EnhancementMethod.realesrgan:
|
| 112 |
+
enhanced_img, _ = await asyncio.to_thread(self.realesrgan_enhancer.enhance, img, outscale=self.upscale)
|
| 113 |
+
else:
|
| 114 |
+
_, _, enhanced_img = await asyncio.to_thread(self.face_enhancer.enhance,
|
| 115 |
+
img,
|
| 116 |
+
has_aligned=False,
|
| 117 |
+
only_center_face=False,
|
| 118 |
+
paste_back=True)
|
| 119 |
+
|
| 120 |
+
enhanced_img = cv2.cvtColor(enhanced_img, cv2.COLOR_BGR2RGB)
|
| 121 |
+
enhanced_width, enhanced_height = self.check_image_resolution(enhanced_img)
|
| 122 |
+
|
| 123 |
+
return enhanced_img, (width, height), (enhanced_width, enhanced_height)
|