dmx_perplexity / app.py
d-matrix-user's picture
fixing model namespace
4ed6bfb
import evaluate
from evaluate.utils import infer_gradio_input_types,parse_gradio_data,json_to_string_type,parse_readme
from pathlib import Path
import sys
def launch_gradio_widget(metric):
"""Launches `metric` widget with Gradio."""
try:
import gradio as gr
except ImportError as error:
error("To create a metric widget with Gradio make sure gradio is installed.")
raise error
local_path = Path(sys.path[0])
# if there are several input types, use first as default.
if isinstance(metric.features, list):
(feature_names, feature_types) = zip(*metric.features[0].items())
else:
(feature_names, feature_types) = zip(*metric.features.items())
gradio_input_types = infer_gradio_input_types(feature_types)
def compute(data):
return metric.compute(model = 'distilgpt2',**parse_gradio_data(data, gradio_input_types))
iface = gr.Interface(
fn=compute,
inputs=gr.Dataframe(
headers=feature_names,
col_count=len(feature_names),
row_count=1,
datatype=json_to_string_type(gradio_input_types),
),
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description + "\nThis metric is computed using distilgpt2 model.\nIf this is a text-based metric, make sure to wrap you input in double quotes."
" Alternatively you can use a JSON-formatted list as input."
),
title=f"Metric: {metric.name}",
article=parse_readme(local_path / "README.md"),
# TODO: load test cases and use them to populate examples
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
)
iface.launch()
module = evaluate.load("d-matrix/dmx_perplexity")
launch_gradio_widget(module)