Spaces:
Runtime error
Runtime error
File size: 11,927 Bytes
bbbf06e f288ceb ea7f8cc f288ceb ea7f8cc f288ceb bc0cb58 084aa80 f288ceb 084aa80 f288ceb bc0cb58 f288ceb bc0cb58 f288ceb bbbf06e 084aa80 bbbf06e 084aa80 bc0cb58 f288ceb bbbf06e f288ceb bbbf06e f288ceb bbbf06e f288ceb bbbf06e f288ceb ff19da3 f288ceb bbbf06e f288ceb bbbf06e 084aa80 f288ceb bc0cb58 f288ceb bc0cb58 f288ceb ea7f8cc f288ceb bc0cb58 f288ceb bc0cb58 f288ceb 084aa80 bbbf06e f288ceb 084aa80 f288ceb 084aa80 f288ceb bbbf06e f288ceb bbbf06e f288ceb bbbf06e 084aa80 bc0cb58 bbbf06e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
from abc import ABC, abstractmethod
from collections import Counter
from dis import dis
from typing import Any, Iterator, List, Dict
from pprint import pprint
# Workaround for https://github.com/tensorflow/tensorflow/issues/48797
try:
import tensorflow as tf
except ModuleNotFoundError:
# Error handling
pass
import torch
import ffmpeg
import numpy as np
from utils import format_timestamp
# Defaults for Silero
# TODO: Make these configurable?
SPEECH_TRESHOLD = 0.3
MAX_SILENT_PERIOD = 10 # seconds
MAX_MERGE_SIZE = 150 # Do not create segments larger than 2.5 minutes
SEGMENT_PADDING_LEFT = 1 # Start detected text segment early
SEGMENT_PADDING_RIGHT = 3 # End detected segments late
# Whether to attempt to transcribe non-speech
TRANSCRIBE_NON_SPEECH = False
class AbstractTranscription(ABC):
def __init__(self, segment_padding_left: int = None, segment_padding_right = None, max_silent_period: int = None, max_merge_size: int = None, transcribe_non_speech: bool = False):
self.sampling_rate = 16000
self.segment_padding_left = segment_padding_left
self.segment_padding_right = segment_padding_right
self.max_silent_period = max_silent_period
self.max_merge_size = max_merge_size
self.transcribe_non_speech = transcribe_non_speech
def get_audio_segment(self, str, start_time: str = None, duration: str = None):
return load_audio(str, self.sampling_rate, start_time, duration)
@abstractmethod
def get_transcribe_timestamps(self, audio: str):
"""
Get the start and end timestamps of the sections that should be transcribed by this VAD method.
Parameters
----------
audio: str
The audio file.
Returns
-------
A list of start and end timestamps, in fractional seconds.
"""
return
def transcribe(self, audio: str, whisperCallable):
"""
Transcribe the given audo file.
Parameters
----------
audio: str
The audio file.
whisperCallable: Callable[[Union[str, np.ndarray, torch.Tensor]], dict[str, Union[dict, Any]]]
The callback that is used to invoke Whisper on an audio file/buffer.
Returns
-------
A list of start and end timestamps, in fractional seconds.
"""
# get speech timestamps from full audio file
seconds_timestamps = self.get_transcribe_timestamps(audio)
padded = self.pad_timestamps(seconds_timestamps, self.segment_padding_left, self.segment_padding_right)
merged = self.merge_timestamps(padded, self.max_silent_period, self.max_merge_size)
print("Timestamps:")
pprint(merged)
if self.transcribe_non_speech:
max_audio_duration = float(ffmpeg.probe(audio)["format"]["duration"])
merged = self.include_gaps(merged, min_gap_length=5, total_duration=max_audio_duration)
print("Transcribing non-speech:")
pprint(merged)
result = {
'text': "",
'segments': [],
'language': ""
}
languageCounter = Counter()
# For each time segment, run whisper
for segment in merged:
segment_start = segment['start']
segment_end = segment['end']
segment_gap = segment.get('gap', False)
segment_duration = segment_end - segment_start
segment_audio = self.get_audio_segment(audio, start_time = str(segment_start), duration = str(segment_duration))
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ", segment_duration, "gap: ", segment_gap)
if segment_gap:
# TODO: Use different parameters for these segments, as they are less likely to contain speech
segment_result = whisperCallable(segment_audio)
else:
segment_result = whisperCallable(segment_audio)
adjusted_segments = self.adjust_whisper_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
# Append to output
result['text'] += segment_result['text']
result['segments'].extend(adjusted_segments)
# Increment detected language
languageCounter[segment_result['language']] += 1
if len(languageCounter) > 0:
result['language'] = languageCounter.most_common(1)[0][0]
return result
def include_gaps(self, segments: Iterator[dict], min_gap_length: float, total_duration: float):
result = []
last_end_time = 0
for segment in segments:
segment_start = float(segment['start'])
segment_end = float(segment['end'])
if (last_end_time != segment_start):
delta = segment_start - last_end_time
if (min_gap_length is None or delta >= min_gap_length):
result.append( { 'start': last_end_time, 'end': segment_start, 'gap': True } )
last_end_time = segment_end
result.append(segment)
# Also include total duration if specified
if (total_duration is not None and last_end_time < total_duration):
delta = total_duration - segment_start
if (min_gap_length is None or delta >= min_gap_length):
result.append( { 'start': last_end_time, 'end': total_duration, 'gap': True } )
return result
def adjust_whisper_timestamp(self, segments: Iterator[dict], adjust_seconds: float, max_source_time: float = None):
result = []
for segment in segments:
segment_start = float(segment['start'])
segment_end = float(segment['end'])
# Filter segments?
if (max_source_time is not None):
if (segment_start > max_source_time):
continue
segment_end = min(max_source_time, segment_end)
new_segment = segment.copy()
# Add to start and end
new_segment['start'] = segment_start + adjust_seconds
new_segment['end'] = segment_end + adjust_seconds
result.append(new_segment)
return result
def pad_timestamps(self, timestamps: List[Dict[str, Any]], padding_left: float, padding_right: float):
result = []
for entry in timestamps:
segment_start = entry['start']
segment_end = entry['end']
if padding_left is not None:
segment_start = max(0, segment_start - padding_left)
if padding_right is not None:
segment_end = segment_end + padding_right
result.append({ 'start': segment_start, 'end': segment_end })
return result
def merge_timestamps(self, timestamps: List[Dict[str, Any]], max_merge_gap: float, max_merge_size: float):
if max_merge_gap is None:
return timestamps
result = []
current_entry = None
for entry in timestamps:
if current_entry is None:
current_entry = entry
continue
# Get distance to the previous entry
distance = entry['start'] - current_entry['end']
current_entry_size = current_entry['end'] - current_entry['start']
if distance <= max_merge_gap and (max_merge_size is None or current_entry_size <= max_merge_size):
# Merge
current_entry['end'] = entry['end']
else:
# Output current entry
result.append(current_entry)
current_entry = entry
# Add final entry
if current_entry is not None:
result.append(current_entry)
return result
def multiply_timestamps(self, timestamps: List[Dict[str, Any]], factor: float):
result = []
for entry in timestamps:
start = entry['start']
end = entry['end']
result.append({
'start': start * factor,
'end': end * factor
})
return result
class VadSileroTranscription(AbstractTranscription):
def __init__(self, segment_padding_left=SEGMENT_PADDING_LEFT, segment_padding_right=SEGMENT_PADDING_RIGHT,
max_silent_period=MAX_SILENT_PERIOD, max_merge_size=MAX_MERGE_SIZE, transcribe_non_speech: bool = False,
copy = None):
super().__init__(segment_padding_left=segment_padding_left, segment_padding_right=segment_padding_right,
max_silent_period=max_silent_period, max_merge_size=max_merge_size, transcribe_non_speech=transcribe_non_speech)
if copy:
self.model = copy.model
self.get_speech_timestamps = copy.get_speech_timestamps
else:
self.model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad')
(self.get_speech_timestamps, _, _, _, _) = utils
def get_transcribe_timestamps(self, audio: str):
wav = self.get_audio_segment(audio)
sample_timestamps = self.get_speech_timestamps(wav, self.model, sampling_rate=self.sampling_rate, threshold=SPEECH_TRESHOLD)
seconds_timestamps = self.multiply_timestamps(sample_timestamps, factor=1 / self.sampling_rate)
return seconds_timestamps
# A very simple VAD that just marks every N seconds as speech
class VadPeriodicTranscription(AbstractTranscription):
def __init__(self, periodic_duration: int):
super().__init__()
self.periodic_duration = periodic_duration
def get_transcribe_timestamps(self, audio: str):
# Get duration in seconds
audio_duration = float(ffmpeg.probe(audio)["format"]["duration"])
result = []
# Generate a timestamp every N seconds
start_timestamp = 0
while (start_timestamp < audio_duration):
end_timestamp = min(start_timestamp + self.periodic_duration, audio_duration)
segment_duration = end_timestamp - start_timestamp
# Minimum duration is 1 second
if (segment_duration >= 1):
result.append( { 'start': start_timestamp, 'end': end_timestamp } )
start_timestamp = end_timestamp
return result
def load_audio(file: str, sample_rate: int = 16000,
start_time: str = None, duration: str = None):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
start_time: str
The start time, using the standard FFMPEG time duration syntax, or None to disable.
duration: str
The duration, using the standard FFMPEG time duration syntax, or None to disable.
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
try:
inputArgs = {'threads': 0}
if (start_time is not None):
inputArgs['ss'] = start_time
if (duration is not None):
inputArgs['t'] = duration
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, **inputArgs)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sample_rate)
.run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}")
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |