Spaces:
Running
Running
Commit
·
106218a
1
Parent(s):
8cc4dc4
Updated to new timbre-trap code, swapped out model, and updated script for cancel button.
Browse files- app.py +5 -2
- models/__init__.py +0 -0
- models/cqt_module.py +0 -281
- models/transcriber.py +0 -626
- requirements.txt +1 -1
- model-8750.pt → tt-demo.pt +2 -2
app.py
CHANGED
@@ -5,7 +5,7 @@ import torchaudio
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
-
timbre_trap = torch.load('
|
9 |
|
10 |
card = ModelCard(
|
11 |
name='Timbre-Trap',
|
@@ -44,6 +44,8 @@ def process_fn(audio_path, de_timbre):
|
|
44 |
audio = audio.squeeze(0)
|
45 |
|
46 |
if de_timbre and audio.abs().max():
|
|
|
|
|
47 |
# Normalize audio to [-1, 1]
|
48 |
audio /= audio.abs().max()
|
49 |
|
@@ -81,6 +83,7 @@ with gr.Blocks() as demo:
|
|
81 |
|
82 |
output = gr.Audio(label='Audio Output', type='filepath')
|
83 |
|
84 |
-
|
85 |
|
|
|
86 |
demo.launch(share=True)
|
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
+
timbre_trap = torch.load('tt-demo.pt', map_location='cpu')
|
9 |
|
10 |
card = ModelCard(
|
11 |
name='Timbre-Trap',
|
|
|
44 |
audio = audio.squeeze(0)
|
45 |
|
46 |
if de_timbre and audio.abs().max():
|
47 |
+
# Low-pass filter the audio to remove ringing
|
48 |
+
audio = torchaudio.functional.lowpass_biquad(audio, 22050, 8000)
|
49 |
# Normalize audio to [-1, 1]
|
50 |
audio /= audio.abs().max()
|
51 |
|
|
|
83 |
|
84 |
output = gr.Audio(label='Audio Output', type='filepath')
|
85 |
|
86 |
+
widgets = build_endpoint(inputs, output, process_fn, card)
|
87 |
|
88 |
+
demo.queue()
|
89 |
demo.launch(share=True)
|
models/__init__.py
DELETED
File without changes
|
models/cqt_module.py
DELETED
@@ -1,281 +0,0 @@
|
|
1 |
-
from torchaudio.transforms import AmplitudeToDB
|
2 |
-
from cqt_pytorch import CQT as _CQT
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import librosa
|
6 |
-
import torch
|
7 |
-
import math
|
8 |
-
|
9 |
-
|
10 |
-
class CQT(_CQT):
|
11 |
-
"""
|
12 |
-
Wrapper which adds some basic functionality to the sliCQ module.
|
13 |
-
"""
|
14 |
-
|
15 |
-
def __init__(self, n_octaves, bins_per_octave, sample_rate, secs_per_block):
|
16 |
-
"""
|
17 |
-
Instantiate the sliCQ module and wrapper.
|
18 |
-
|
19 |
-
Parameters
|
20 |
-
----------
|
21 |
-
n_octaves : int
|
22 |
-
Number of octaves below Nyquist to span
|
23 |
-
bins_per_octave : int
|
24 |
-
Number of bins allocated to each octave
|
25 |
-
sample_rate : int or float
|
26 |
-
Number of samples per second of audio
|
27 |
-
secs_per_block : float
|
28 |
-
Number of seconds to process at a time
|
29 |
-
"""
|
30 |
-
|
31 |
-
super().__init__(num_octaves=n_octaves,
|
32 |
-
num_bins_per_octave=bins_per_octave,
|
33 |
-
sample_rate=sample_rate,
|
34 |
-
block_length=int(secs_per_block * sample_rate),
|
35 |
-
power_of_2_length=True)
|
36 |
-
|
37 |
-
self.sample_rate = sample_rate
|
38 |
-
|
39 |
-
# Compute hop length corresponding to transform coefficients
|
40 |
-
self.hop_length = (self.block_length / self.max_window_length)
|
41 |
-
|
42 |
-
# Compute total number of bins
|
43 |
-
self.n_bins = n_octaves * bins_per_octave
|
44 |
-
# Determine frequency (MIDI) below Nyquist by specified octaves
|
45 |
-
fmin = librosa.hz_to_midi((sample_rate / 2) / (2 ** n_octaves))
|
46 |
-
|
47 |
-
# Determine center frequency (MIDI) associated with each bin of module
|
48 |
-
self.midi_freqs = fmin + np.arange(self.n_bins) / (bins_per_octave / 12)
|
49 |
-
|
50 |
-
def forward(self, audio):
|
51 |
-
"""
|
52 |
-
Encode a batch of audio into CQT spectral coefficients.
|
53 |
-
|
54 |
-
Parameters
|
55 |
-
----------
|
56 |
-
audio : Tensor (B x 1 X T)
|
57 |
-
Batch of input audio
|
58 |
-
|
59 |
-
Returns
|
60 |
-
----------
|
61 |
-
coefficients : Tensor (B x 2 x F X T)
|
62 |
-
Batch of real/imaginary CQT coefficients
|
63 |
-
"""
|
64 |
-
|
65 |
-
with torch.no_grad():
|
66 |
-
# Obtain complex CQT coefficients
|
67 |
-
coefficients = self.encode(audio)
|
68 |
-
|
69 |
-
# Convert complex coefficients to real representation
|
70 |
-
coefficients = self.to_real(coefficients)
|
71 |
-
|
72 |
-
return coefficients
|
73 |
-
|
74 |
-
@staticmethod
|
75 |
-
def to_real(coefficients):
|
76 |
-
"""
|
77 |
-
Convert a set of complex coefficients to equivalent real representation.
|
78 |
-
|
79 |
-
Parameters
|
80 |
-
----------
|
81 |
-
coefficients : Tensor (B x 1 x F X T)
|
82 |
-
Batch of complex CQT coefficients
|
83 |
-
|
84 |
-
Returns
|
85 |
-
----------
|
86 |
-
coefficients : Tensor (B x 2 x F X T)
|
87 |
-
Batch of real/imaginary CQT coefficients
|
88 |
-
"""
|
89 |
-
|
90 |
-
# Collapse channel dimension (mono assumed)
|
91 |
-
coefficients = coefficients.squeeze(-3)
|
92 |
-
# Convert complex coefficients to real and imaginary
|
93 |
-
coefficients = torch.view_as_real(coefficients)
|
94 |
-
# Place real and imaginary coefficients under channel dimension
|
95 |
-
coefficients = coefficients.transpose(-1, -2).transpose(-2, -3)
|
96 |
-
|
97 |
-
return coefficients
|
98 |
-
|
99 |
-
@staticmethod
|
100 |
-
def to_complex(coefficients):
|
101 |
-
"""
|
102 |
-
Convert a set of real coefficients to their equivalent complex representation.
|
103 |
-
|
104 |
-
Parameters
|
105 |
-
----------
|
106 |
-
coefficients : Tensor (B x 2 x F X T)
|
107 |
-
Batch of real/imaginary CQT coefficients
|
108 |
-
|
109 |
-
Returns
|
110 |
-
----------
|
111 |
-
coefficients : Tensor (B x F X T)
|
112 |
-
Batch of complex CQT coefficients
|
113 |
-
"""
|
114 |
-
|
115 |
-
# Move real and imaginary coefficients to last dimension
|
116 |
-
coefficients = coefficients.transpose(-3, -2).transpose(-2, -1)
|
117 |
-
# Convert real and imaginary coefficients to complex
|
118 |
-
coefficients = torch.view_as_complex(coefficients.contiguous())
|
119 |
-
|
120 |
-
return coefficients
|
121 |
-
|
122 |
-
@staticmethod
|
123 |
-
def to_magnitude(coefficients):
|
124 |
-
"""
|
125 |
-
Compute the magnitude for a set of real coefficients.
|
126 |
-
|
127 |
-
Parameters
|
128 |
-
----------
|
129 |
-
coefficients : Tensor (B x 2 x F X T)
|
130 |
-
Batch of real/imaginary CQT coefficients
|
131 |
-
|
132 |
-
Returns
|
133 |
-
----------
|
134 |
-
magnitude : Tensor (B x F X T)
|
135 |
-
Batch of magnitude coefficients
|
136 |
-
"""
|
137 |
-
|
138 |
-
# Compute L2-norm of coefficients to compute magnitude
|
139 |
-
magnitude = coefficients.norm(p=2, dim=-3)
|
140 |
-
|
141 |
-
return magnitude
|
142 |
-
|
143 |
-
@staticmethod
|
144 |
-
def to_decibels(magnitude, rescale=True):
|
145 |
-
"""
|
146 |
-
Convert a set of magnitude coefficients to decibels.
|
147 |
-
|
148 |
-
TODO - move 0 dB only if maximum is higher?
|
149 |
-
- currently it's consistent with previous dB scaling
|
150 |
-
- currently it's only used for visualization
|
151 |
-
|
152 |
-
Parameters
|
153 |
-
----------
|
154 |
-
magnitude : Tensor (B x F X T)
|
155 |
-
Batch of magnitude coefficients (amplitude)
|
156 |
-
rescale : bool
|
157 |
-
Rescale decibels to the range [0, 1]
|
158 |
-
|
159 |
-
Returns
|
160 |
-
----------
|
161 |
-
decibels : Tensor (B x F X T)
|
162 |
-
Batch of magnitude coefficients (dB)
|
163 |
-
"""
|
164 |
-
|
165 |
-
# Initialize a differentiable conversion to decibels
|
166 |
-
decibels = AmplitudeToDB(stype='amplitude', top_db=80)(magnitude)
|
167 |
-
|
168 |
-
if rescale:
|
169 |
-
# Make 0 dB ceiling
|
170 |
-
decibels -= decibels.max()
|
171 |
-
# Rescale decibels to range [0, 1]
|
172 |
-
decibels = 1 + decibels / 80
|
173 |
-
|
174 |
-
return decibels
|
175 |
-
|
176 |
-
def decode(self, coefficients):
|
177 |
-
"""
|
178 |
-
Invert CQT spectral coefficients to synthesize audio.
|
179 |
-
|
180 |
-
Parameters
|
181 |
-
----------
|
182 |
-
coefficients : Tensor (B x 2 OR 1 x F X T)
|
183 |
-
Batch of real/imaginary OR complex CQT coefficients
|
184 |
-
|
185 |
-
Returns
|
186 |
-
----------
|
187 |
-
output : Tensor (B x 1 x T)
|
188 |
-
Batch of reconstructed audio
|
189 |
-
"""
|
190 |
-
|
191 |
-
with torch.no_grad():
|
192 |
-
if not coefficients.is_complex():
|
193 |
-
# Convert real coefficients to complex representation
|
194 |
-
coefficients = self.to_complex(coefficients)
|
195 |
-
# Add a channel dimension to coefficients
|
196 |
-
coefficients = coefficients.unsqueeze(-3)
|
197 |
-
|
198 |
-
# Decode the complex CQT coefficients
|
199 |
-
audio = super().decode(coefficients)
|
200 |
-
|
201 |
-
return audio
|
202 |
-
|
203 |
-
def pad_to_block_length(self, audio):
|
204 |
-
"""
|
205 |
-
Pad audio to the next multiple of block length such that it can be processed in full.
|
206 |
-
|
207 |
-
Parameters
|
208 |
-
----------
|
209 |
-
audio : Tensor (B x 1 X T)
|
210 |
-
Batch of audio
|
211 |
-
|
212 |
-
Returns
|
213 |
-
----------
|
214 |
-
audio : Tensor (B x 1 X T + p)
|
215 |
-
Batch of padded audio
|
216 |
-
"""
|
217 |
-
|
218 |
-
# Pad the audio with zeros to fill up the remainder of the final block
|
219 |
-
audio = torch.nn.functional.pad(audio, (0, -audio.size(-1) % self.block_length))
|
220 |
-
|
221 |
-
return audio
|
222 |
-
|
223 |
-
def get_expected_samples(self, t):
|
224 |
-
"""
|
225 |
-
Determine the number of samples corresponding to a specified amount of time.
|
226 |
-
|
227 |
-
Parameters
|
228 |
-
----------
|
229 |
-
t : float
|
230 |
-
Amount of time
|
231 |
-
|
232 |
-
Returns
|
233 |
-
----------
|
234 |
-
num_samples : int
|
235 |
-
Number of audio samples expected
|
236 |
-
"""
|
237 |
-
|
238 |
-
# Compute number of samples and round down
|
239 |
-
num_samples = int(max(0, t) * self.sample_rate)
|
240 |
-
|
241 |
-
return num_samples
|
242 |
-
|
243 |
-
def get_expected_frames(self, num_samples):
|
244 |
-
"""
|
245 |
-
Determine the number of frames the module will return for a given number of samples.
|
246 |
-
|
247 |
-
Parameters
|
248 |
-
----------
|
249 |
-
num_samples : int
|
250 |
-
Number of audio samples available
|
251 |
-
|
252 |
-
Returns
|
253 |
-
----------
|
254 |
-
num_frames : int
|
255 |
-
Number of frames expected
|
256 |
-
"""
|
257 |
-
|
258 |
-
# Number frames of coefficients per chunk times amount of chunks
|
259 |
-
num_frames = math.ceil((num_samples / self.block_length) * self.max_window_length)
|
260 |
-
|
261 |
-
return num_frames
|
262 |
-
|
263 |
-
def get_times(self, n_frames):
|
264 |
-
"""
|
265 |
-
Determine the time associated with each frame of coefficients.
|
266 |
-
|
267 |
-
Parameters
|
268 |
-
----------
|
269 |
-
n_frames : int
|
270 |
-
Number of frames available
|
271 |
-
|
272 |
-
Returns
|
273 |
-
----------
|
274 |
-
times : ndarray (T)
|
275 |
-
Time (seconds) associated with each frame
|
276 |
-
"""
|
277 |
-
|
278 |
-
# Compute times as cumulative hops in seconds
|
279 |
-
times = np.arange(n_frames) * self.hop_length / self.sample_rate
|
280 |
-
|
281 |
-
return times
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/transcriber.py
DELETED
@@ -1,626 +0,0 @@
|
|
1 |
-
from .cqt_module import CQT
|
2 |
-
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
class Transcriber(nn.Module):
|
8 |
-
"""
|
9 |
-
Implements a 2D convolutional U-Net architecture based loosely on SoundStream.
|
10 |
-
"""
|
11 |
-
|
12 |
-
def __init__(self, sample_rate, n_octaves, bins_per_octave, secs_per_block=3, latent_size=None, model_complexity=1, skip_connections=False):
|
13 |
-
"""
|
14 |
-
Initialize the full autoencoder.
|
15 |
-
|
16 |
-
Parameters
|
17 |
-
----------
|
18 |
-
sample_rate : int
|
19 |
-
Expected sample rate of input
|
20 |
-
n_octaves : int
|
21 |
-
Number of octaves below Nyquist frequency to represent
|
22 |
-
bins_per_octave : int
|
23 |
-
Number of frequency bins within each octave
|
24 |
-
secs_per_block : float
|
25 |
-
Number of seconds to process at once with sliCQ
|
26 |
-
latent_size : int or None (Optional)
|
27 |
-
Dimensionality of latent space
|
28 |
-
model_complexity : int
|
29 |
-
Scaling factor for number of filters and embedding sizes
|
30 |
-
skip_connections : bool
|
31 |
-
Whether to include skip connections between encoder and decoder
|
32 |
-
"""
|
33 |
-
|
34 |
-
nn.Module.__init__(self)
|
35 |
-
|
36 |
-
self.sliCQ = CQT(n_octaves=n_octaves,
|
37 |
-
bins_per_octave=bins_per_octave,
|
38 |
-
sample_rate=sample_rate,
|
39 |
-
secs_per_block=secs_per_block)
|
40 |
-
|
41 |
-
self.encoder = Encoder(feature_size=self.sliCQ.n_bins, latent_size=latent_size, model_complexity=model_complexity)
|
42 |
-
self.decoder = Decoder(feature_size=self.sliCQ.n_bins, latent_size=latent_size, model_complexity=model_complexity)
|
43 |
-
|
44 |
-
if skip_connections:
|
45 |
-
# Start by adding encoder features with identity weighting
|
46 |
-
self.skip_weights = torch.nn.Parameter(torch.ones(5))
|
47 |
-
else:
|
48 |
-
# No skip connections
|
49 |
-
self.skip_weights = None
|
50 |
-
|
51 |
-
def encode(self, audio):
|
52 |
-
"""
|
53 |
-
Encode a batch of raw audio into latent codes.
|
54 |
-
|
55 |
-
Parameters
|
56 |
-
----------
|
57 |
-
audio : Tensor (B x 1 x T)
|
58 |
-
Batch of input raw audio
|
59 |
-
|
60 |
-
Returns
|
61 |
-
----------
|
62 |
-
latents : Tensor (B x D_lat x T)
|
63 |
-
Batch of latent codes
|
64 |
-
embeddings : list of [Tensor (B x C x H x T)]
|
65 |
-
Embeddings produced by encoder at each level
|
66 |
-
losses : dict containing
|
67 |
-
...
|
68 |
-
"""
|
69 |
-
|
70 |
-
# Compute CQT spectral features
|
71 |
-
coefficients = self.sliCQ(audio)
|
72 |
-
|
73 |
-
# Encode features into latent vectors
|
74 |
-
latents, embeddings, losses = self.encoder(coefficients)
|
75 |
-
|
76 |
-
return latents, embeddings, losses
|
77 |
-
|
78 |
-
def apply_skip_connections(self, embeddings):
|
79 |
-
"""
|
80 |
-
Apply skip connections to encoder embeddings, or discard the embeddings if skip connections do not exist.
|
81 |
-
|
82 |
-
Parameters
|
83 |
-
----------
|
84 |
-
embeddings : list of [Tensor (B x C x H x T)]
|
85 |
-
Embeddings produced by encoder at each level
|
86 |
-
|
87 |
-
Returns
|
88 |
-
----------
|
89 |
-
embeddings : list of [Tensor (B x C x H x T)]
|
90 |
-
Encoder embeddings scaled with learnable weight
|
91 |
-
"""
|
92 |
-
|
93 |
-
if self.skip_weights is not None:
|
94 |
-
# Apply a learnable weight to the embeddings for the skip connection
|
95 |
-
embeddings = [self.skip_weights[i] * e for i, e in enumerate(embeddings)]
|
96 |
-
else:
|
97 |
-
# Discard embeddings from encoder
|
98 |
-
embeddings = None
|
99 |
-
|
100 |
-
return embeddings
|
101 |
-
|
102 |
-
def decode(self, latents, embeddings=None, transcribe=False):
|
103 |
-
"""
|
104 |
-
Decode a batch of latent codes into logits representing real/imaginary coefficients.
|
105 |
-
|
106 |
-
Parameters
|
107 |
-
----------
|
108 |
-
latents : Tensor (B x D_lat x T)
|
109 |
-
Batch of latent codes
|
110 |
-
embeddings : list of [Tensor (B x C x H x T)] or None (no skip connections)
|
111 |
-
Embeddings produced by encoder at each level
|
112 |
-
transcribe : bool
|
113 |
-
Switch for performing transcription vs. reconstruction
|
114 |
-
|
115 |
-
Returns
|
116 |
-
----------
|
117 |
-
coefficients : Tensor (B x 2 x F X T)
|
118 |
-
Batch of output logits [-∞, ∞]
|
119 |
-
"""
|
120 |
-
|
121 |
-
# Create binary values to indicate function decoder should perform
|
122 |
-
indicator = (not transcribe) * torch.ones_like(latents[..., :1, :])
|
123 |
-
|
124 |
-
# Concatenate indicator to final dimension of latents
|
125 |
-
latents = torch.cat((latents, indicator), dim=-2)
|
126 |
-
|
127 |
-
# Decode latent vectors into real/imaginary coefficients
|
128 |
-
coefficients = self.decoder(latents, embeddings)
|
129 |
-
|
130 |
-
return coefficients
|
131 |
-
|
132 |
-
def transcribe(self, audio):
|
133 |
-
"""
|
134 |
-
Obtain transcriptions for a batch of raw audio.
|
135 |
-
|
136 |
-
Parameters
|
137 |
-
----------
|
138 |
-
audio : Tensor (B x 1 x T)
|
139 |
-
Batch of input raw audio
|
140 |
-
|
141 |
-
Returns
|
142 |
-
----------
|
143 |
-
activations : Tensor (B x F X T)
|
144 |
-
Batch of multi-pitch activations [0, 1]
|
145 |
-
"""
|
146 |
-
|
147 |
-
# Encode raw audio into latent vectors
|
148 |
-
latents, embeddings, _ = self.encode(audio)
|
149 |
-
|
150 |
-
# Apply skip connections if they are turned on
|
151 |
-
embeddings = self.apply_skip_connections(embeddings)
|
152 |
-
|
153 |
-
# Estimate pitch using transcription switch
|
154 |
-
coefficients = self.decode(latents, embeddings, True)
|
155 |
-
|
156 |
-
# Extract magnitude of decoded coefficients and convert to activations
|
157 |
-
activations = torch.nn.functional.tanh(self.sliCQ.to_magnitude(coefficients))
|
158 |
-
|
159 |
-
return activations
|
160 |
-
|
161 |
-
def reconstruct(self, audio):
|
162 |
-
"""
|
163 |
-
Obtain reconstructed coefficients for a batch of raw audio.
|
164 |
-
|
165 |
-
Parameters
|
166 |
-
----------
|
167 |
-
audio : Tensor (B x 1 x T)
|
168 |
-
Batch of input raw audio
|
169 |
-
|
170 |
-
Returns
|
171 |
-
----------
|
172 |
-
reconstruction : Tensor (B x 2 x F X T)
|
173 |
-
Batch of reconstructed spectral coefficients
|
174 |
-
"""
|
175 |
-
|
176 |
-
# Encode raw audio into latent vectors
|
177 |
-
latents, embeddings, losses = self.encode(audio)
|
178 |
-
|
179 |
-
# Apply skip connections if they are turned on
|
180 |
-
embeddings = self.apply_skip_connections(embeddings)
|
181 |
-
|
182 |
-
# Decode latent vectors into spectral coefficients
|
183 |
-
reconstruction = self.decode(latents, embeddings)
|
184 |
-
|
185 |
-
return reconstruction
|
186 |
-
|
187 |
-
def forward(self, audio, consistency=False):
|
188 |
-
"""
|
189 |
-
Perform all model functions efficiently (for training/evaluation).
|
190 |
-
|
191 |
-
Parameters
|
192 |
-
----------
|
193 |
-
audio : Tensor (B x 1 x T)
|
194 |
-
Batch of input raw audio
|
195 |
-
consistency : bool
|
196 |
-
Whether to perform computations for consistency loss
|
197 |
-
|
198 |
-
Returns
|
199 |
-
----------
|
200 |
-
reconstruction : Tensor (B x 2 x F X T)
|
201 |
-
Batch of reconstructed spectral coefficients
|
202 |
-
latents : Tensor (B x D_lat x T)
|
203 |
-
Batch of latent codes
|
204 |
-
transcription : Tensor (B x 2 x F X T)
|
205 |
-
Batch of transcription spectral coefficients
|
206 |
-
transcription_rec : Tensor (B x 2 x F X T)
|
207 |
-
Batch of reconstructed spectral coefficients for transcription coefficients input
|
208 |
-
transcription_scr : Tensor (B x 2 x F X T)
|
209 |
-
Batch of transcription spectral coefficients for transcription coefficients input
|
210 |
-
losses : dict containing
|
211 |
-
...
|
212 |
-
"""
|
213 |
-
|
214 |
-
# Encode raw audio into latent vectors
|
215 |
-
latents, embeddings, losses = self.encode(audio)
|
216 |
-
|
217 |
-
# Apply skip connections if they are turned on
|
218 |
-
embeddings = self.apply_skip_connections(embeddings)
|
219 |
-
|
220 |
-
# Decode latent vectors into spectral coefficients
|
221 |
-
reconstruction = self.decode(latents, embeddings)
|
222 |
-
|
223 |
-
# Estimate pitch using transcription switch
|
224 |
-
transcription = self.decode(latents, embeddings, True)
|
225 |
-
|
226 |
-
if consistency:
|
227 |
-
# Encode transcription coefficients for samples with ground-truth
|
228 |
-
latents_trn, embeddings_trn, _ = self.encoder(transcription)
|
229 |
-
|
230 |
-
# Apply skip connections if they are turned on
|
231 |
-
embeddings_trn = self.apply_skip_connections(embeddings_trn)
|
232 |
-
|
233 |
-
# Attempt to reconstruct transcription spectral coefficients
|
234 |
-
transcription_rec = self.decode(latents_trn, embeddings_trn)
|
235 |
-
|
236 |
-
# Attempt to transcribe audio pertaining to transcription coefficients
|
237 |
-
transcription_scr = self.decode(latents_trn, embeddings_trn, True)
|
238 |
-
else:
|
239 |
-
# Return null for both sets of coefficients
|
240 |
-
transcription_rec, transcription_scr = None, None
|
241 |
-
|
242 |
-
return reconstruction, latents, transcription, transcription_rec, transcription_scr, losses
|
243 |
-
|
244 |
-
|
245 |
-
class Encoder(nn.Module):
|
246 |
-
"""
|
247 |
-
Implements a 2D convolutional encoder.
|
248 |
-
"""
|
249 |
-
|
250 |
-
def __init__(self, feature_size, latent_size=None, model_complexity=1):
|
251 |
-
"""
|
252 |
-
Initialize the encoder.
|
253 |
-
|
254 |
-
Parameters
|
255 |
-
----------
|
256 |
-
feature_size : int
|
257 |
-
Dimensionality of input features
|
258 |
-
latent_size : int or None (Optional)
|
259 |
-
Dimensionality of latent space
|
260 |
-
model_complexity : int
|
261 |
-
Scaling factor for number of filters
|
262 |
-
"""
|
263 |
-
|
264 |
-
nn.Module.__init__(self)
|
265 |
-
|
266 |
-
channels = (2 * 2 ** (model_complexity - 1),
|
267 |
-
4 * 2 ** (model_complexity - 1),
|
268 |
-
8 * 2 ** (model_complexity - 1),
|
269 |
-
16 * 2 ** (model_complexity - 1),
|
270 |
-
32 * 2 ** (model_complexity - 1))
|
271 |
-
|
272 |
-
# Make sure all channel sizes are integers
|
273 |
-
channels = tuple([round(c) for c in channels])
|
274 |
-
|
275 |
-
if latent_size is None:
|
276 |
-
# Set default dimensionality
|
277 |
-
latent_size = 32 * 2 ** (model_complexity - 1)
|
278 |
-
|
279 |
-
self.convin = nn.Sequential(
|
280 |
-
nn.Conv2d(2, channels[0], kernel_size=3, padding='same'),
|
281 |
-
nn.ELU(inplace=True)
|
282 |
-
)
|
283 |
-
|
284 |
-
self.block1 = EncoderBlock(channels[0], channels[1], stride=2)
|
285 |
-
self.block2 = EncoderBlock(channels[1], channels[2], stride=2)
|
286 |
-
self.block3 = EncoderBlock(channels[2], channels[3], stride=2)
|
287 |
-
self.block4 = EncoderBlock(channels[3], channels[4], stride=2)
|
288 |
-
|
289 |
-
embedding_size = feature_size
|
290 |
-
|
291 |
-
for i in range(4):
|
292 |
-
# Dimensionality after strided convolutions
|
293 |
-
embedding_size = embedding_size // 2 - 1
|
294 |
-
|
295 |
-
self.convlat = nn.Conv2d(channels[4], latent_size, kernel_size=(embedding_size, 1))
|
296 |
-
|
297 |
-
def forward(self, coefficients):
|
298 |
-
"""
|
299 |
-
Encode a batch of input spectral features.
|
300 |
-
|
301 |
-
Parameters
|
302 |
-
----------
|
303 |
-
coefficients : Tensor (B x 2 x F X T)
|
304 |
-
Batch of input spectral features
|
305 |
-
|
306 |
-
Returns
|
307 |
-
----------
|
308 |
-
latents : Tensor (B x D_lat x T)
|
309 |
-
Batch of latent codes
|
310 |
-
embeddings : list of [Tensor (B x C x H x T)]
|
311 |
-
Embeddings produced by encoder at each level
|
312 |
-
losses : dict containing
|
313 |
-
...
|
314 |
-
"""
|
315 |
-
|
316 |
-
# Initialize a list to hold features for skip connections
|
317 |
-
embeddings = list()
|
318 |
-
|
319 |
-
# Encode features into embeddings
|
320 |
-
embeddings.append(self.convin(coefficients))
|
321 |
-
embeddings.append(self.block1(embeddings[-1]))
|
322 |
-
embeddings.append(self.block2(embeddings[-1]))
|
323 |
-
embeddings.append(self.block3(embeddings[-1]))
|
324 |
-
embeddings.append(self.block4(embeddings[-1]))
|
325 |
-
|
326 |
-
# Compute latent vectors from embeddings
|
327 |
-
latents = self.convlat(embeddings[-1]).squeeze(-2)
|
328 |
-
|
329 |
-
# No encoder losses
|
330 |
-
loss = dict()
|
331 |
-
|
332 |
-
return latents, embeddings, loss
|
333 |
-
|
334 |
-
|
335 |
-
class Decoder(nn.Module):
|
336 |
-
"""
|
337 |
-
Implements a 2D convolutional decoder.
|
338 |
-
"""
|
339 |
-
|
340 |
-
def __init__(self, feature_size, latent_size=None, model_complexity=1):
|
341 |
-
"""
|
342 |
-
Initialize the decoder.
|
343 |
-
|
344 |
-
Parameters
|
345 |
-
----------
|
346 |
-
feature_size : int
|
347 |
-
Dimensionality of input features
|
348 |
-
latent_size : int or None (Optional)
|
349 |
-
Dimensionality of latent space
|
350 |
-
model_complexity : int
|
351 |
-
Scaling factor for number of filters
|
352 |
-
"""
|
353 |
-
|
354 |
-
nn.Module.__init__(self)
|
355 |
-
|
356 |
-
channels = (32 * 2 ** (model_complexity - 1),
|
357 |
-
16 * 2 ** (model_complexity - 1),
|
358 |
-
8 * 2 ** (model_complexity - 1),
|
359 |
-
4 * 2 ** (model_complexity - 1),
|
360 |
-
2 * 2 ** (model_complexity - 1))
|
361 |
-
|
362 |
-
# Make sure all channel sizes are integers
|
363 |
-
channels = tuple([round(c) for c in channels])
|
364 |
-
|
365 |
-
if latent_size is None:
|
366 |
-
# Set default dimensionality
|
367 |
-
latent_size = 32 * 2 ** (model_complexity - 1)
|
368 |
-
|
369 |
-
padding = list()
|
370 |
-
|
371 |
-
embedding_size = feature_size
|
372 |
-
|
373 |
-
for i in range(4):
|
374 |
-
# Padding required for expected output size
|
375 |
-
padding.append(embedding_size % 2)
|
376 |
-
# Dimensionality after strided convolutions
|
377 |
-
embedding_size = embedding_size // 2 - 1
|
378 |
-
|
379 |
-
# Reverse order
|
380 |
-
padding.reverse()
|
381 |
-
|
382 |
-
self.convin = nn.Sequential(
|
383 |
-
nn.ConvTranspose2d(latent_size + 1, channels[0], kernel_size=(embedding_size, 1)),
|
384 |
-
nn.ELU(inplace=True)
|
385 |
-
)
|
386 |
-
|
387 |
-
self.block1 = DecoderBlock(channels[0], channels[1], stride=2, padding=padding[0])
|
388 |
-
self.block2 = DecoderBlock(channels[1], channels[2], stride=2, padding=padding[1])
|
389 |
-
self.block3 = DecoderBlock(channels[2], channels[3], stride=2, padding=padding[2])
|
390 |
-
self.block4 = DecoderBlock(channels[3], channels[4], stride=2, padding=padding[3])
|
391 |
-
|
392 |
-
self.convout = nn.Conv2d(channels[4], 2, kernel_size=3, padding='same')
|
393 |
-
|
394 |
-
def forward(self, latents, encoder_embeddings=None):
|
395 |
-
"""
|
396 |
-
Decode a batch of input latent codes.
|
397 |
-
|
398 |
-
Parameters
|
399 |
-
----------
|
400 |
-
latents : Tensor (B x D_lat x T)
|
401 |
-
Batch of latent codes
|
402 |
-
encoder_embeddings : list of [Tensor (B x C x H x T)] or None (no skip connections)
|
403 |
-
Embeddings produced by encoder at each level
|
404 |
-
|
405 |
-
Returns
|
406 |
-
----------
|
407 |
-
output : Tensor (B x 2 x F X T)
|
408 |
-
Batch of output logits [-∞, ∞]
|
409 |
-
"""
|
410 |
-
|
411 |
-
# Restore feature dimension
|
412 |
-
latents = latents.unsqueeze(-2)
|
413 |
-
|
414 |
-
# Process latents with decoder blocks
|
415 |
-
embeddings = self.convin(latents)
|
416 |
-
|
417 |
-
if encoder_embeddings is not None:
|
418 |
-
embeddings = embeddings + encoder_embeddings[-1]
|
419 |
-
|
420 |
-
embeddings = self.block1(embeddings)
|
421 |
-
|
422 |
-
if encoder_embeddings is not None:
|
423 |
-
embeddings = embeddings + encoder_embeddings[-2]
|
424 |
-
|
425 |
-
embeddings = self.block2(embeddings)
|
426 |
-
|
427 |
-
if encoder_embeddings is not None:
|
428 |
-
embeddings = embeddings + encoder_embeddings[-3]
|
429 |
-
|
430 |
-
embeddings = self.block3(embeddings)
|
431 |
-
|
432 |
-
if encoder_embeddings is not None:
|
433 |
-
embeddings = embeddings + encoder_embeddings[-4]
|
434 |
-
|
435 |
-
embeddings = self.block4(embeddings)
|
436 |
-
|
437 |
-
if encoder_embeddings is not None:
|
438 |
-
embeddings = embeddings + encoder_embeddings[-5]
|
439 |
-
|
440 |
-
# Decode embeddings into spectral logits
|
441 |
-
output = self.convout(embeddings)
|
442 |
-
|
443 |
-
return output
|
444 |
-
|
445 |
-
|
446 |
-
class EncoderBlock(nn.Module):
|
447 |
-
"""
|
448 |
-
Implements a chain of residual convolutional blocks with progressively
|
449 |
-
increased dilation, followed by down-sampling via strided convolution.
|
450 |
-
"""
|
451 |
-
|
452 |
-
def __init__(self, in_channels, out_channels, stride=2):
|
453 |
-
"""
|
454 |
-
Initialize the encoder block.
|
455 |
-
|
456 |
-
Parameters
|
457 |
-
----------
|
458 |
-
in_channels : int
|
459 |
-
Number of input feature channels
|
460 |
-
out_channels : int
|
461 |
-
Number of output feature channels
|
462 |
-
stride : int
|
463 |
-
Stride for the final convolutional layer
|
464 |
-
"""
|
465 |
-
|
466 |
-
nn.Module.__init__(self)
|
467 |
-
|
468 |
-
self.block1 = ResidualConv2dBlock(in_channels, in_channels, kernel_size=3, dilation=1)
|
469 |
-
self.block2 = ResidualConv2dBlock(in_channels, in_channels, kernel_size=3, dilation=2)
|
470 |
-
self.block3 = ResidualConv2dBlock(in_channels, in_channels, kernel_size=3, dilation=3)
|
471 |
-
|
472 |
-
self.hop = stride
|
473 |
-
self.win = 2 * stride
|
474 |
-
|
475 |
-
self.sconv = nn.Sequential(
|
476 |
-
# Down-sample along frequency (height) dimension via strided convolution
|
477 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=(self.win, 1), stride=(self.hop, 1)),
|
478 |
-
nn.ELU(inplace=True)
|
479 |
-
)
|
480 |
-
|
481 |
-
def forward(self, x):
|
482 |
-
"""
|
483 |
-
Feed features through the encoder block.
|
484 |
-
|
485 |
-
Parameters
|
486 |
-
----------
|
487 |
-
x : Tensor (B x C_in x H x W)
|
488 |
-
Batch of input features
|
489 |
-
|
490 |
-
Returns
|
491 |
-
----------
|
492 |
-
y : Tensor (B x C_out x H x W)
|
493 |
-
Batch of corresponding output features
|
494 |
-
"""
|
495 |
-
|
496 |
-
# Process features
|
497 |
-
y = self.block1(x)
|
498 |
-
y = self.block2(y)
|
499 |
-
y = self.block3(y)
|
500 |
-
|
501 |
-
# Down-sample
|
502 |
-
y = self.sconv(y)
|
503 |
-
|
504 |
-
return y
|
505 |
-
|
506 |
-
|
507 |
-
class DecoderBlock(nn.Module):
|
508 |
-
"""
|
509 |
-
Implements up-sampling via transposed convolution, followed by a chain
|
510 |
-
of residual convolutional blocks with progressively increased dilation.
|
511 |
-
"""
|
512 |
-
|
513 |
-
def __init__(self, in_channels, out_channels, stride=2, padding=0):
|
514 |
-
"""
|
515 |
-
Initialize the encoder block.
|
516 |
-
|
517 |
-
Parameters
|
518 |
-
----------
|
519 |
-
in_channels : int
|
520 |
-
Number of input feature channels
|
521 |
-
out_channels : int
|
522 |
-
Number of output feature channels
|
523 |
-
stride : int
|
524 |
-
Stride for the transposed convolution
|
525 |
-
padding : int
|
526 |
-
Number of features to pad after up-sampling
|
527 |
-
"""
|
528 |
-
|
529 |
-
nn.Module.__init__(self)
|
530 |
-
|
531 |
-
self.hop = stride
|
532 |
-
self.win = 2 * stride
|
533 |
-
|
534 |
-
self.tconv = nn.Sequential(
|
535 |
-
# Up-sample along frequency (height) dimension via transposed convolution
|
536 |
-
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=(self.win, 1), stride=(self.hop, 1), output_padding=(padding, 0)),
|
537 |
-
nn.ELU(inplace=True)
|
538 |
-
)
|
539 |
-
|
540 |
-
self.block1 = ResidualConv2dBlock(out_channels, out_channels, kernel_size=3, dilation=1)
|
541 |
-
self.block2 = ResidualConv2dBlock(out_channels, out_channels, kernel_size=3, dilation=2)
|
542 |
-
self.block3 = ResidualConv2dBlock(out_channels, out_channels, kernel_size=3, dilation=3)
|
543 |
-
|
544 |
-
def forward(self, x):
|
545 |
-
"""
|
546 |
-
Feed features through the decoder block.
|
547 |
-
|
548 |
-
Parameters
|
549 |
-
----------
|
550 |
-
x : Tensor (B x C_in x H x W)
|
551 |
-
Batch of input features
|
552 |
-
|
553 |
-
Returns
|
554 |
-
----------
|
555 |
-
y : Tensor (B x C_out x H x W)
|
556 |
-
Batch of corresponding output features
|
557 |
-
"""
|
558 |
-
|
559 |
-
# Up-sample
|
560 |
-
y = self.tconv(x)
|
561 |
-
|
562 |
-
# Process features
|
563 |
-
y = self.block1(y)
|
564 |
-
y = self.block2(y)
|
565 |
-
y = self.block3(y)
|
566 |
-
|
567 |
-
return y
|
568 |
-
|
569 |
-
|
570 |
-
class ResidualConv2dBlock(nn.Module):
|
571 |
-
"""
|
572 |
-
Implements a 2D convolutional block with dilation, no down-sampling, and a residual connection.
|
573 |
-
"""
|
574 |
-
|
575 |
-
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
|
576 |
-
"""
|
577 |
-
Initialize the convolutional block.
|
578 |
-
|
579 |
-
Parameters
|
580 |
-
----------
|
581 |
-
in_channels : int
|
582 |
-
Number of input feature channels
|
583 |
-
out_channels : int
|
584 |
-
Number of output feature channels
|
585 |
-
kernel_size : int
|
586 |
-
Kernel size for convolutions
|
587 |
-
dilation : int
|
588 |
-
Amount of dilation for first convolution
|
589 |
-
"""
|
590 |
-
|
591 |
-
nn.Module.__init__(self)
|
592 |
-
|
593 |
-
self.conv1 = nn.Sequential(
|
594 |
-
# TODO - only dilate across frequency?
|
595 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding='same', dilation=dilation),
|
596 |
-
nn.ELU(inplace=True)
|
597 |
-
)
|
598 |
-
|
599 |
-
self.conv2 = nn.Sequential(
|
600 |
-
nn.Conv2d(out_channels, out_channels, kernel_size=1),
|
601 |
-
nn.ELU(inplace=True)
|
602 |
-
)
|
603 |
-
|
604 |
-
def forward(self, x):
|
605 |
-
"""
|
606 |
-
Feed features through the convolutional block.
|
607 |
-
|
608 |
-
Parameters
|
609 |
-
----------
|
610 |
-
x : Tensor (B x C_in x H x W)
|
611 |
-
Batch of input features
|
612 |
-
|
613 |
-
Returns
|
614 |
-
----------
|
615 |
-
y : Tensor (B x C_out x H x W)
|
616 |
-
Batch of corresponding output features
|
617 |
-
"""
|
618 |
-
|
619 |
-
# Process features
|
620 |
-
y = self.conv1(x)
|
621 |
-
y = self.conv2(y)
|
622 |
-
|
623 |
-
# Residual connection
|
624 |
-
y = y + x
|
625 |
-
|
626 |
-
return y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-e git+https://github.com/audacitorch/pyharp.git#egg=pyharp
|
2 |
-
|
3 |
torchaudio
|
4 |
torch
|
5 |
cqt_pytorch
|
|
|
1 |
-e git+https://github.com/audacitorch/pyharp.git#egg=pyharp
|
2 |
+
-e git+https://github.com/sony/timbre-trap.git@release#egg=timbre-trap
|
3 |
torchaudio
|
4 |
torch
|
5 |
cqt_pytorch
|
model-8750.pt → tt-demo.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f4575c6642348eda3d2e7ff280eece5036e5922e0dacfd25e8dfeb10fd52842
|
3 |
+
size 11399295
|