Spaces:
Running
Running
File size: 11,415 Bytes
b4bdfee 3ec9224 b4bdfee 5be8df6 26a21fc b4bdfee 58453b6 146ca67 b4bdfee b347a6f b4bdfee b347a6f b4bdfee 1daf9a1 b1ec9ac 5be8df6 58b5050 b4bdfee 9bf736d b4bdfee 9bf736d b4bdfee 9bf736d b4bdfee 5be8df6 b4bdfee 32a58be 5be8df6 b4bdfee 5be8df6 b4bdfee 1ef8d7c 5be8df6 b4bdfee 09444af 5be8df6 b4bdfee 00bd139 5be8df6 b4bdfee 00bd139 b4bdfee 9733941 8bef1bd 9733941 8bef1bd b4bdfee 5be8df6 3ca2785 00bd139 1ef8d7c b4bdfee 51d2a09 5be8df6 b4bdfee 51d2a09 5be8df6 b4bdfee a25f0eb 5be8df6 b4bdfee 5be8df6 b4bdfee 5be8df6 b4bdfee 5be8df6 51d2a09 b4bdfee 51d2a09 5be8df6 b4bdfee a25f0eb e4c8a25 b4bdfee e4c8a25 b4bdfee e4c8a25 b4bdfee 5be8df6 b4bdfee 5be8df6 51d2a09 5be8df6 51d2a09 14155e5 9733941 b4bdfee 9733941 b4bdfee 9733941 8bef1bd b4bdfee 8bef1bd 5be8df6 b4bdfee 5be8df6 51d2a09 b4bdfee 5be8df6 b4bdfee 5be8df6 b4bdfee 323ccbe 5be8df6 b4bdfee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
"""
PDF-based chatbot with Retrieval-Augmented Generation
"""
import os
import gradio as gr
from dotenv import load_dotenv
import indexing
import retrieval
# default_persist_directory = './chroma_HF/'
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.3",
"microsoft/Phi-3.5-mini-instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"google/gemma-2-2b-it",
"google/gemma-2-9b-it",
"Qwen/Qwen2.5-1.5B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-7B-Instruct",
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load environment file - HuggingFace API key
def retrieve_api():
"""Retrieve HuggingFace API Key"""
_ = load_dotenv()
global huggingfacehub_api_token
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
# Initialize database
def initialize_database(
list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
):
"""Initialize database"""
# Create list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
# Create collection_name for vector database
progress(0.1, desc="Creating collection name...")
collection_name = indexing.create_collection_name(list_file_path[0])
progress(0.25, desc="Loading document...")
# Load document and create splits
doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
# Create or load vector database
progress(0.5, desc="Generating vector database...")
# global vector_db
vector_db = indexing.create_db(doc_splits, collection_name)
return vector_db, collection_name, "Complete!"
# Initialize LLM
def initialize_llm(
llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
):
"""Initialize LLM"""
# print("llm_option",llm_option)
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = retrieval.initialize_llmchain(
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
)
return qa_chain, "Complete!"
# Chatbot conversation
def conversation(qa_chain, message, history):
"""Chatbot conversation"""
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(
qa_chain, message, history
)
# Format output gradio components
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
return (
qa_chain,
gr.update(value=""),
new_history,
response_source1,
response_source1_page,
response_source2,
response_source2_page,
response_source3,
response_source3_page,
)
SPACE_TITLE = """
<center><h2>PDF-based chatbot</center></h2>
<h3>Ask any questions about your PDF documents</h3>
"""
SPACE_INFO = """
<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
The user interface explicitely shows multiple steps to help understand the RAG workflow.
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
"""
# Gradio User Interface
def gradio_ui():
"""Gradio User Interface"""
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(SPACE_TITLE)
gr.Markdown(SPACE_INFO)
with gr.Tab("Step 1 - Upload PDF"):
with gr.Row():
document = gr.File(
height=200,
file_count="multiple",
file_types=[".pdf"],
interactive=True,
label="Upload your PDF documents (single or multiple)",
)
with gr.Tab("Step 2 - Process document"):
with gr.Row():
db_btn = gr.Radio(
["ChromaDB"],
label="Vector database type",
value="ChromaDB",
type="index",
info="Choose your vector database",
)
with gr.Accordion("Advanced options - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(
minimum=100,
maximum=1000,
value=600,
step=20,
label="Chunk size",
info="Chunk size",
interactive=True,
)
with gr.Row():
slider_chunk_overlap = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=10,
label="Chunk overlap",
info="Chunk overlap",
interactive=True,
)
with gr.Row():
db_progress = gr.Textbox(
label="Vector database initialization", value="None"
)
with gr.Row():
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 3 - Initialize QA chain"):
with gr.Row():
llm_btn = gr.Radio(
list_llm_simple,
label="LLM models",
value=list_llm_simple[0],
type="index",
info="Choose your LLM model",
)
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Model temperature",
interactive=True,
)
with gr.Row():
slider_maxtokens = gr.Slider(
minimum=224,
maximum=4096,
value=1024,
step=32,
label="Max Tokens",
info="Model max tokens",
interactive=True,
)
with gr.Row():
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="top-k samples",
info="Model top-k samples",
interactive=True,
)
with gr.Row():
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(
label="Reference 1", lines=2, container=True, scale=20
)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(
label="Reference 2", lines=2, container=True, scale=20
)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(
label="Reference 3", lines=2, container=True, scale=20
)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(
placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
container=True,
)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton(
components=[msg, chatbot], value="Clear conversation"
)
# Preprocessing events
db_btn.click(
initialize_database,
inputs=[document, slider_chunk_size, slider_chunk_overlap],
outputs=[vector_db, collection_name, db_progress],
)
qachain_btn.click(
initialize_llm,
inputs=[
llm_btn,
slider_temperature,
slider_maxtokens,
slider_topk,
vector_db,
],
outputs=[qa_chain, llm_progress],
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
# Chatbot events
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[
qa_chain,
msg,
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[
qa_chain,
msg,
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
retrieve_api()
gradio_ui()
|