File size: 11,415 Bytes
b4bdfee
 
 
3ec9224
b4bdfee
 
5be8df6
26a21fc
 
b4bdfee
 
58453b6
 
146ca67
b4bdfee
 
 
b347a6f
b4bdfee
 
b347a6f
b4bdfee
 
 
 
 
 
 
 
1daf9a1
b1ec9ac
5be8df6
58b5050
b4bdfee
 
 
 
 
 
9bf736d
 
 
b4bdfee
 
 
 
 
9bf736d
 
b4bdfee
9bf736d
 
b4bdfee
 
5be8df6
 
b4bdfee
 
32a58be
5be8df6
b4bdfee
5be8df6
b4bdfee
 
1ef8d7c
5be8df6
 
b4bdfee
 
 
 
 
 
09444af
5be8df6
b4bdfee
 
 
 
00bd139
5be8df6
 
b4bdfee
00bd139
b4bdfee
 
 
 
 
 
 
9733941
 
8bef1bd
9733941
 
 
8bef1bd
b4bdfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be8df6
3ca2785
00bd139
1ef8d7c
b4bdfee
 
 
 
51d2a09
5be8df6
b4bdfee
 
 
 
 
 
 
 
51d2a09
5be8df6
b4bdfee
 
 
 
 
 
 
a25f0eb
5be8df6
b4bdfee
 
 
 
 
 
 
 
 
5be8df6
b4bdfee
 
 
 
 
 
 
 
 
5be8df6
b4bdfee
 
 
5be8df6
51d2a09
b4bdfee
51d2a09
5be8df6
b4bdfee
 
 
 
 
 
 
a25f0eb
e4c8a25
b4bdfee
 
 
 
 
 
 
 
 
e4c8a25
b4bdfee
 
 
 
 
 
 
 
 
e4c8a25
b4bdfee
 
 
 
 
 
 
 
 
5be8df6
b4bdfee
5be8df6
51d2a09
5be8df6
51d2a09
14155e5
9733941
 
b4bdfee
 
 
9733941
 
b4bdfee
 
 
9733941
8bef1bd
b4bdfee
 
 
8bef1bd
5be8df6
b4bdfee
 
 
 
5be8df6
51d2a09
b4bdfee
 
 
 
5be8df6
b4bdfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be8df6
 
b4bdfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323ccbe
5be8df6
 
 
b4bdfee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
PDF-based chatbot with Retrieval-Augmented Generation
"""

import os
import gradio as gr

from dotenv import load_dotenv

import indexing
import retrieval


# default_persist_directory = './chroma_HF/'
list_llm = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "microsoft/Phi-3.5-mini-instruct",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "HuggingFaceTB/SmolLM2-1.7B-Instruct",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceH4/zephyr-7b-gemma-v0.1",
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "google/gemma-2-2b-it",
    "google/gemma-2-9b-it",
    "Qwen/Qwen2.5-1.5B-Instruct",
    "Qwen/Qwen2.5-3B-Instruct",
    "Qwen/Qwen2.5-7B-Instruct",
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]


# Load environment file - HuggingFace API key
def retrieve_api():
    """Retrieve HuggingFace API Key"""
    _ = load_dotenv()
    global huggingfacehub_api_token
    huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")


# Initialize database
def initialize_database(
    list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
):
    """Initialize database"""

    # Create list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]

    # Create collection_name for vector database
    progress(0.1, desc="Creating collection name...")
    collection_name = indexing.create_collection_name(list_file_path[0])

    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)

    # Create or load vector database
    progress(0.5, desc="Generating vector database...")

    # global vector_db
    vector_db = indexing.create_db(doc_splits, collection_name)

    return vector_db, collection_name, "Complete!"


# Initialize LLM
def initialize_llm(
    llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
):
    """Initialize LLM"""

    # print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name: ", llm_name)
    qa_chain = retrieval.initialize_llmchain(
        llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
    )
    return qa_chain, "Complete!"


# Chatbot conversation
def conversation(qa_chain, message, history):
    """Chatbot conversation"""

    qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(
        qa_chain, message, history
    )

    # Format output gradio components
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1

    return (
        qa_chain,
        gr.update(value=""),
        new_history,
        response_source1,
        response_source1_page,
        response_source2,
        response_source2_page,
        response_source3,
        response_source3_page,
    )


SPACE_TITLE = """
<center><h2>PDF-based chatbot</center></h2>
<h3>Ask any questions about your PDF documents</h3>
"""

SPACE_INFO = """
<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
The user interface explicitely shows multiple steps to help understand the RAG workflow. 
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
"""


# Gradio User Interface
def gradio_ui():
    """Gradio User Interface"""

    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()

        gr.Markdown(SPACE_TITLE)
        gr.Markdown(SPACE_INFO)

        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.File(
                    height=200,
                    file_count="multiple",
                    file_types=[".pdf"],
                    interactive=True,
                    label="Upload your PDF documents (single or multiple)",
                )

        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_btn = gr.Radio(
                    ["ChromaDB"],
                    label="Vector database type",
                    value="ChromaDB",
                    type="index",
                    info="Choose your vector database",
                )
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(
                        minimum=100,
                        maximum=1000,
                        value=600,
                        step=20,
                        label="Chunk size",
                        info="Chunk size",
                        interactive=True,
                    )
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(
                        minimum=10,
                        maximum=200,
                        value=40,
                        step=10,
                        label="Chunk overlap",
                        info="Chunk overlap",
                        interactive=True,
                    )
            with gr.Row():
                db_progress = gr.Textbox(
                    label="Vector database initialization", value="None"
                )
            with gr.Row():
                db_btn = gr.Button("Generate vector database")

        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(
                    list_llm_simple,
                    label="LLM models",
                    value=list_llm_simple[0],
                    type="index",
                    info="Choose your LLM model",
                )
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(
                        minimum=0.01,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        label="Temperature",
                        info="Model temperature",
                        interactive=True,
                    )
                with gr.Row():
                    slider_maxtokens = gr.Slider(
                        minimum=224,
                        maximum=4096,
                        value=1024,
                        step=32,
                        label="Max Tokens",
                        info="Model max tokens",
                        interactive=True,
                    )
                with gr.Row():
                    slider_topk = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=3,
                        step=1,
                        label="top-k samples",
                        info="Model top-k samples",
                        interactive=True,
                    )
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(
                        label="Reference 1", lines=2, container=True, scale=20
                    )
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(
                        label="Reference 2", lines=2, container=True, scale=20
                    )
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(
                        label="Reference 3", lines=2, container=True, scale=20
                    )
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(
                    placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
                    container=True,
                )
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton(
                    components=[msg, chatbot], value="Clear conversation"
                )

        # Preprocessing events
        db_btn.click(
            initialize_database,
            inputs=[document, slider_chunk_size, slider_chunk_overlap],
            outputs=[vector_db, collection_name, db_progress],
        )
        qachain_btn.click(
            initialize_llm,
            inputs=[
                llm_btn,
                slider_temperature,
                slider_maxtokens,
                slider_topk,
                vector_db,
            ],
            outputs=[qa_chain, llm_progress],
        ).then(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[
                chatbot,
                doc_source1,
                source1_page,
                doc_source2,
                source2_page,
                doc_source3,
                source3_page,
            ],
            queue=False,
        )

        # Chatbot events
        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[
                qa_chain,
                msg,
                chatbot,
                doc_source1,
                source1_page,
                doc_source2,
                source2_page,
                doc_source3,
                source3_page,
            ],
            queue=False,
        )
        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[
                qa_chain,
                msg,
                chatbot,
                doc_source1,
                source1_page,
                doc_source2,
                source2_page,
                doc_source3,
                source3_page,
            ],
            queue=False,
        )
        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[
                chatbot,
                doc_source1,
                source1_page,
                doc_source2,
                source2_page,
                doc_source3,
                source3_page,
            ],
            queue=False,
        )
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    retrieve_api()
    gradio_ui()