Clement Vachet commited on
Commit
8631332
·
1 Parent(s): 13eef60

Add user interface via gradio app

Browse files
Files changed (4) hide show
  1. .gitignore +3 -0
  2. app.py +111 -0
  3. models/model.pkl +0 -0
  4. requirements.txt +3 -3
.gitignore CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  # Byte-compiled / optimized / DLL files
2
  __pycache__/
3
  *.py[cod]
 
1
+ # Environment file
2
+ config_api.env
3
+
4
  # Byte-compiled / optimized / DLL files
5
  __pycache__/
6
  *.py[cod]
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ import gradio as gr
4
+ from classification.classifier import Classifier
5
+ from dotenv import load_dotenv, find_dotenv
6
+ import json
7
+
8
+ # Initialize API URLs from env file or global settings
9
+ def retrieve_api():
10
+
11
+ env_path = find_dotenv('config_api.env')
12
+ if env_path:
13
+ load_dotenv(dotenv_path=env_path)
14
+ print("config_api.env file loaded successfully.")
15
+ else:
16
+ print("config_api.env file not found.")
17
+
18
+ # Use of AWS endpoint or local container by default
19
+ global AWS_API
20
+ AWS_API = os.getenv("AWS_API", default="http://localhost:8000")
21
+
22
+ def initialize_classifier():
23
+ global cls
24
+ cls = Classifier()
25
+
26
+
27
+ def predict_class_local(sepl, sepw, petl, petw):
28
+ data = list(map(float, [sepl, sepw, petl, petw]))
29
+ results = cls.load_and_test(data)
30
+ return results
31
+
32
+
33
+ def predict_class_aws(sepl, sepw, petl, petw):
34
+ if AWS_API == "http://localhost:8000":
35
+ API_endpoint = AWS_API + "/2015-03-31/functions/function/invocations"
36
+ else:
37
+ API_endpoint = AWS_API + "/test/classify"
38
+
39
+ data = list(map(float, [sepl, sepw, petl, petw]))
40
+ json_object = {
41
+ "features": [
42
+ data
43
+ ]
44
+ }
45
+
46
+ response = requests.post(API_endpoint, json=json_object)
47
+ if response.status_code == 200:
48
+ # Process the response
49
+ response_json = response.json()
50
+ results_dict = json.loads(response_json["body"])
51
+ else:
52
+ results_dict = {"Error": response.status_code}
53
+ gr.Error(f"\t API Error: {response.status_code}")
54
+ return results_dict
55
+
56
+
57
+ def predict(sepl, sepw, petl, petw, type):
58
+ print("type: ", type)
59
+ if type == "Local":
60
+ results = predict_class_local(sepl, sepw, petl, petw)
61
+ elif type == "AWS API":
62
+ results = predict_class_aws(sepl, sepw, petl, petw)
63
+
64
+ prediction = results["predictions"][0]
65
+ confidence = max(results["probabilities"][0])
66
+
67
+ return f"Prediction: {prediction} \t - \t Confidence: {confidence:.3f}"
68
+
69
+
70
+ # Define the Gradio interface
71
+ def user_interface():
72
+ with gr.Blocks() as demo:
73
+ gr.Markdown("# IRIS classification task - use of AWS Lambda")
74
+ gr.Markdown(
75
+ """
76
+ Aims: Categorization of different species of iris flowers (Setosa, Versicolor, and Virginica)
77
+ based on measurements of physical characteristics (sepals and petals).
78
+
79
+ Notes: This web application uses two types of predictions:
80
+ - local prediction (direct source code)
81
+ - cloud prediction via an AWS API (i.e. use of ECR, Lambda function and API Gateway) to run the machine learning model.
82
+
83
+ """
84
+ )
85
+
86
+ with gr.Row():
87
+ with gr.Column():
88
+ with gr.Group():
89
+ gr_sepl = gr.Slider(minimum=4.0, maximum=8.0, step=0.1, label="Sepal Length (in cm)")
90
+ gr_sepw = gr.Slider(minimum=2.0, maximum=5.0, step=0.1, label="Sepal Width (in cm)")
91
+ gr_petl = gr.Slider(minimum=1.0, maximum=7.0, step=0.1, label="Petal Length (in cm)")
92
+ gr_petw = gr.Slider(minimum=0.1, maximum=2.8, step=0.1, label="Petal Width (in cm)")
93
+ with gr.Column():
94
+ with gr.Row():
95
+ gr_type = gr.Radio(["Local", "AWS API"], value="Local", label="Prediction type")
96
+ with gr.Row():
97
+ gr_output = gr.Textbox(label="Prediction output")
98
+
99
+ with gr.Row():
100
+ submit_btn = gr.Button("Submit")
101
+ clear_button = gr.ClearButton()
102
+
103
+ submit_btn.click(fn=predict, inputs=[gr_sepl, gr_sepw, gr_petl, gr_petw, gr_type], outputs=[gr_output])
104
+ clear_button.click(lambda: None, inputs=None, outputs=[gr_output], queue=False)
105
+ demo.queue().launch(debug=True)
106
+
107
+
108
+ if __name__ == "__main__":
109
+ retrieve_api()
110
+ initialize_classifier()
111
+ user_interface()
models/model.pkl CHANGED
Binary files a/models/model.pkl and b/models/model.pkl differ
 
requirements.txt CHANGED
@@ -1,7 +1,7 @@
1
  scikit-learn==1.6.0
2
  pandas==2.2.3
3
  numpy==2.2.0
4
- # streamlit==1.41.0
5
- # pyarrow==16.0.0
6
  pytest==8.3.4
7
- joblib==1.4.2
 
 
1
  scikit-learn==1.6.0
2
  pandas==2.2.3
3
  numpy==2.2.0
4
+ gradio==5.5.0
 
5
  pytest==8.3.4
6
+ joblib==1.4.2
7
+ python-dotenv==1.0.1