Clement Vachet
Improve code based on pylint and black suggestions
9ecca49
"""
IRIS Classification - class definition
"""
import os
import numpy as np
import pandas as pd
import joblib
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
class Classifier:
"""Classifier class - ML training and testing"""
def __init__(self):
pass
def train_and_save(self):
"""ML training and saving"""
print("\nIRIS model training...")
iris = load_iris()
cart = DecisionTreeClassifier(max_depth=3)
x_train, x_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.1, random_state=42
)
model = cart.fit(x_train, y_train)
print(f"Model score: {cart.score(x_train, y_train):.3f}")
print(f"Test Accuracy: {cart.score(x_test, y_test):.3f}")
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
test_data_csv_path = os.path.join(parent_dir, "data", "test_data.csv")
pd.concat([pd.DataFrame(x_test), pd.DataFrame(y_test, columns=["4"])], axis=1).to_csv(
test_data_csv_path, index=False
)
model_path = os.path.join(parent_dir, "models", "model.pkl")
joblib.dump(model, model_path)
print(f"Model saved to {model_path}")
def load_and_test(self, data):
"ML loading and testing"
print("\nIRIS model prediction...")
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
model_path = os.path.join(parent_dir, "models", "model.pkl")
model = joblib.load(model_path)
features = np.array(data)
if len(features.shape) == 1:
features = features.reshape(1, -1)
if features.shape[-1] != 4:
raise ValueError("Expected 4 features per input.")
# Predict the class
predictions = model.predict(features).tolist()
probabilities = model.predict_proba(features).tolist()
# Map predictions to class labels
iris_types = {0: "setosa", 1: "versicolor", 2: "virginica"}
prediction_labels = [iris_types[pred] for pred in predictions]
return {"predictions": prediction_labels, "probabilities": probabilities}