Clement Vachet
Update local host port
1a9ccec
raw
history blame
3.87 kB
import os
import requests
import gradio as gr
from classification.classifier import Classifier
from dotenv import load_dotenv, find_dotenv
import json
# Initialize API URLs from env file or global settings
def retrieve_api():
env_path = find_dotenv('config_api.env')
if env_path:
load_dotenv(dotenv_path=env_path)
print("config_api.env file loaded successfully.")
else:
print("config_api.env file not found.")
# Use of AWS endpoint or local container by default
global AWS_API
AWS_API = os.getenv("AWS_API", default="http://localhost:8000")
def initialize_classifier():
global cls
cls = Classifier()
def predict_class_local(sepl, sepw, petl, petw):
data = list(map(float, [sepl, sepw, petl, petw]))
results = cls.load_and_test(data)
return results
def predict_class_aws(sepl, sepw, petl, petw):
if AWS_API == "http://localhost:8080":
API_endpoint = AWS_API + "/2015-03-31/functions/function/invocations"
else:
API_endpoint = AWS_API + "/test/classify"
data = list(map(float, [sepl, sepw, petl, petw]))
json_object = {
"features": [
data
]
}
response = requests.post(API_endpoint, json=json_object)
if response.status_code == 200:
# Process the response
response_json = response.json()
results_dict = json.loads(response_json["body"])
else:
results_dict = {"Error": response.status_code}
gr.Error(f"\t API Error: {response.status_code}")
return results_dict
def predict(sepl, sepw, petl, petw, type):
print("type: ", type)
if type == "Local":
results = predict_class_local(sepl, sepw, petl, petw)
elif type == "AWS API":
results = predict_class_aws(sepl, sepw, petl, petw)
prediction = results["predictions"][0]
confidence = max(results["probabilities"][0])
return f"Prediction: {prediction} \t - \t Confidence: {confidence:.3f}"
# Define the Gradio interface
def user_interface():
with gr.Blocks() as demo:
gr.Markdown("# IRIS classification task - use of AWS Lambda")
gr.Markdown(
"""
Aims: Categorization of different species of iris flowers (Setosa, Versicolor, and Virginica)
based on measurements of physical characteristics (sepals and petals).
Notes: This web application uses two types of predictions:
- local prediction (direct source code)
- cloud prediction via an AWS API (i.e. use of ECR, Lambda function and API Gateway) to run the machine learning model.
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
gr_sepl = gr.Slider(minimum=4.0, maximum=8.0, step=0.1, label="Sepal Length (in cm)")
gr_sepw = gr.Slider(minimum=2.0, maximum=5.0, step=0.1, label="Sepal Width (in cm)")
gr_petl = gr.Slider(minimum=1.0, maximum=7.0, step=0.1, label="Petal Length (in cm)")
gr_petw = gr.Slider(minimum=0.1, maximum=2.8, step=0.1, label="Petal Width (in cm)")
with gr.Column():
with gr.Row():
gr_type = gr.Radio(["Local", "AWS API"], value="Local", label="Prediction type")
with gr.Row():
gr_output = gr.Textbox(label="Prediction output")
with gr.Row():
submit_btn = gr.Button("Submit")
clear_button = gr.ClearButton()
submit_btn.click(fn=predict, inputs=[gr_sepl, gr_sepw, gr_petl, gr_petw, gr_type], outputs=[gr_output])
clear_button.click(lambda: None, inputs=None, outputs=[gr_output], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
retrieve_api()
initialize_classifier()
user_interface()