curtpond commited on
Commit
e84b099
1 Parent(s): f7170b6

Created new prediction function.

Browse files
Files changed (1) hide show
  1. app.py +21 -11
app.py CHANGED
@@ -11,10 +11,10 @@ from sklearn.feature_extraction.text import CountVectorizer
11
  from sklearn.feature_extraction.text import TfidfVectorizer
12
 
13
  # file name
14
- lr_filename = 'lr_021223.pkl'
15
 
16
  # Load model from pickle file
17
- model = pickle.load(open(lr_filename, 'rb'))
18
 
19
 
20
  # Process input text, including removing stopwords, converting to lowercase, and removing punctuation
@@ -29,21 +29,31 @@ def process_text(text):
29
  return text
30
 
31
  # Vectorize input text
32
- vectorizer = CountVectorizer()
 
33
  def vectorize_text(text):
34
- text = process_text(text)
35
- text = vectorizer.fit_transform([text])
36
- return text
 
37
 
38
  # Valid input for the model so number of features match
39
- # Code will go here
40
-
41
- # Prediction function
42
  def predict(text):
43
- text = vectorize_text(text)
44
- prediction = model.predict(text)
 
 
 
 
45
  return prediction
46
 
 
 
 
 
 
 
 
47
 
48
  # Define interface
49
  demo = gr.Interface(fn=predict,
 
11
  from sklearn.feature_extraction.text import TfidfVectorizer
12
 
13
  # file name
14
+ #lr_filename = 'lr_021223.pkl'
15
 
16
  # Load model from pickle file
17
+ # model = pickle.load(open(lr_filename, 'rb'))
18
 
19
 
20
  # Process input text, including removing stopwords, converting to lowercase, and removing punctuation
 
29
  return text
30
 
31
  # Vectorize input text
32
+ vec = CountVectorizer()
33
+ '''
34
  def vectorize_text(text):
35
+ #text = process_text(text)
36
+ #text = vectorizer.fit_transform([text])
37
+ #return text
38
+ '''
39
 
40
  # Valid input for the model so number of features match
 
 
 
41
  def predict(text):
42
+ # Load the pickled model
43
+ filename = 'lr_021223.pkl'
44
+ loaded_model = pickle.load(open(filename, 'rb'))
45
+ text = process_text(text)
46
+ text = vec.transform([text])
47
+ prediction = loaded_model.predict(text)
48
  return prediction
49
 
50
+ '''
51
+ Prediction function
52
+ #def predict(text):
53
+ #text = vectorize_text(text)
54
+ #prediction = model.predict(text)
55
+ #return prediction
56
+ '''
57
 
58
  # Define interface
59
  demo = gr.Interface(fn=predict,