File size: 20,153 Bytes
5905fd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 3.432213777886737
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 7.628304527060248
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args:
language: hi
metrics:
- name: Test WER
type: wer
value: 87.3
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13.0
type: mozilla-foundation/common_voice_13_0
config: dv
split: test
args:
language: dv
metrics:
- name: Wer
type: wer
value: 125.69809089960707
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
1. The transcription always starts with the `<|startoftranscript|>` token
2. The second token is the language token (e.g. `<|en|>` for English)
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
Thus, a typical sequence of context tokens might look as follows:
```
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
```
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
the Whisper model will automatically predict the output langauge and task itself.
The context tokens can be set accordingly:
```python
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
```
Which forces the model to predict in English under the task of speech recognition.
## Transcription
### English to English
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
(English) and task (transcribe).
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
>>> model.config.forced_decoder_ids = None
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
### French to French
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids)
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
```
## Translation
Setting the task to "translate" forces the Whisper model to perform speech translation.
### French to English
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' A very interesting work, we will finally be given on this subject.']
```
## Evaluation
This code snippet shows how to evaluate Whisper Small on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
3.432213777886737
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-small",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
|