Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,334 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
try:
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
except Exception as e:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
62 |
-
|
|
|
|
|
63 |
|
|
|
64 |
with gr.Row():
|
65 |
-
with gr.Column():
|
66 |
-
gr.
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
74 |
if __name__ == "__main__":
|
75 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import tempfile
|
4 |
+
import requests
|
5 |
import gradio as gr
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
import openai
|
8 |
+
import logging
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
+
|
13 |
+
# Initialize Hugging Face models
|
14 |
+
HUGGINGFACE_MODELS = {
|
15 |
+
"Phi-3 Mini 128k Instruct by EswardiVI": "eswardivi/Phi-3-mini-128k-instruct",
|
16 |
+
"Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct"
|
17 |
+
}
|
18 |
+
|
19 |
+
# Utility Functions
|
20 |
+
def extract_text_from_pdf(pdf_path):
|
21 |
+
"""Extract text content from PDF file."""
|
22 |
try:
|
23 |
+
reader = PdfReader(pdf_path)
|
24 |
+
text = ""
|
25 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
26 |
+
page_text = page.extract_text()
|
27 |
+
if page_text:
|
28 |
+
text += page_text + "\n"
|
29 |
+
else:
|
30 |
+
logging.warning(f"No text found on page {page_num}.")
|
31 |
+
if not text.strip():
|
32 |
+
return "Error: No extractable text found in the PDF."
|
33 |
+
return text
|
34 |
except Exception as e:
|
35 |
+
logging.error(f"Error reading PDF file: {e}")
|
36 |
+
return f"Error reading PDF file: {e}"
|
37 |
+
|
38 |
+
def format_content(text, format_type):
|
39 |
+
"""Format extracted text according to specified format."""
|
40 |
+
if format_type == 'txt':
|
41 |
+
return text
|
42 |
+
elif format_type == 'md':
|
43 |
+
paragraphs = text.split('\n\n')
|
44 |
+
return '\n\n'.join(paragraphs)
|
45 |
+
elif format_type == 'html':
|
46 |
+
paragraphs = text.split('\n\n')
|
47 |
+
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
|
48 |
+
else:
|
49 |
+
logging.error(f"Unsupported format: {format_type}")
|
50 |
+
return f"Unsupported format: {format_type}"
|
51 |
+
|
52 |
+
def split_into_snippets(text, context_size):
|
53 |
+
"""Split text into manageable snippets based on context size."""
|
54 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
55 |
+
snippets = []
|
56 |
+
current_snippet = ""
|
57 |
+
|
58 |
+
for sentence in sentences:
|
59 |
+
if len(current_snippet) + len(sentence) + 1 > context_size:
|
60 |
+
if current_snippet:
|
61 |
+
snippets.append(current_snippet.strip())
|
62 |
+
current_snippet = sentence + " "
|
63 |
+
else:
|
64 |
+
snippets.append(sentence.strip())
|
65 |
+
current_snippet = ""
|
66 |
+
else:
|
67 |
+
current_snippet += sentence + " "
|
68 |
+
|
69 |
+
if current_snippet.strip():
|
70 |
+
snippets.append(current_snippet.strip())
|
71 |
+
|
72 |
+
return snippets
|
73 |
+
|
74 |
+
def build_prompts(snippets, prompt_instruction, custom_prompt):
|
75 |
+
"""Build formatted prompts from text snippets."""
|
76 |
+
prompts = []
|
77 |
+
for idx, snippet in enumerate(snippets, start=1):
|
78 |
+
current_prompt = custom_prompt if custom_prompt else prompt_instruction
|
79 |
+
framed_prompt = f"---\nPart {idx} of {len(snippets)}:\n{current_prompt}\n\n{snippet}\n\nEnd of Part {idx}.\n---"
|
80 |
+
prompts.append(framed_prompt)
|
81 |
+
return prompts
|
82 |
+
|
83 |
+
def send_to_huggingface(prompt, model_name):
|
84 |
+
"""Send prompt to Hugging Face model."""
|
85 |
+
try:
|
86 |
+
payload = {"inputs": prompt}
|
87 |
+
response = requests.post(
|
88 |
+
f"https://api-inference.huggingface.co/models/{model_name}",
|
89 |
+
json=payload
|
90 |
)
|
91 |
+
if response.status_code == 200:
|
92 |
+
return response.json()[0].get('generated_text', 'No generated text found.')
|
93 |
+
else:
|
94 |
+
error_info = response.json()
|
95 |
+
error_message = error_info.get('error', 'Unknown error occurred.')
|
96 |
+
logging.error(f"Error from Hugging Face model: {error_message}")
|
97 |
+
return f"Error from Hugging Face model: {error_message}"
|
98 |
+
except Exception as e:
|
99 |
+
logging.error(f"Error interacting with Hugging Face model: {e}")
|
100 |
+
return f"Error interacting with Hugging Face model: {e}"
|
101 |
+
|
102 |
+
def authenticate_openai(api_key):
|
103 |
+
"""Authenticate with OpenAI API."""
|
104 |
+
if api_key:
|
105 |
+
try:
|
106 |
+
openai.api_key = api_key
|
107 |
+
openai.Model.list()
|
108 |
+
return "OpenAI Authentication Successful!"
|
109 |
+
except Exception as e:
|
110 |
+
logging.error(f"OpenAI API Key Error: {e}")
|
111 |
+
return f"OpenAI API Key Error: {e}"
|
112 |
+
return "No OpenAI API key provided."
|
113 |
+
|
114 |
+
# Main Interface
|
115 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
116 |
+
# Header
|
117 |
+
gr.Markdown("# π Smart PDF Summarizer")
|
118 |
+
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.")
|
119 |
|
120 |
+
# Authentication Section
|
121 |
with gr.Row():
|
122 |
+
with gr.Column(scale=1):
|
123 |
+
openai_api_key = gr.Textbox(
|
124 |
+
label="π OpenAI API Key",
|
125 |
+
type="password",
|
126 |
+
placeholder="Enter your OpenAI API key (optional)"
|
127 |
+
)
|
128 |
+
auth_status = gr.Textbox(
|
129 |
+
label="Authentication Status",
|
130 |
+
interactive=False
|
131 |
+
)
|
132 |
+
auth_button = gr.Button("π Authenticate", variant="primary")
|
133 |
+
|
134 |
+
# Main Content
|
135 |
+
with gr.Row():
|
136 |
+
# Left Column - Input Options
|
137 |
+
with gr.Column(scale=1):
|
138 |
+
pdf_input = gr.File(
|
139 |
+
label="π Upload PDF",
|
140 |
+
file_types=[".pdf"]
|
141 |
+
)
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
format_type = gr.Radio(
|
145 |
+
choices=["txt", "md", "html"],
|
146 |
+
value="txt",
|
147 |
+
label="π Output Format"
|
148 |
+
)
|
149 |
+
|
150 |
+
context_size = gr.Slider(
|
151 |
+
minimum=4000,
|
152 |
+
maximum=128000,
|
153 |
+
step=4000,
|
154 |
+
value=32000,
|
155 |
+
label="π Context Window Size"
|
156 |
+
)
|
157 |
+
|
158 |
+
snippet_number = gr.Number(
|
159 |
+
label="π’ Snippet Number (Optional)",
|
160 |
+
value=None,
|
161 |
+
precision=0
|
162 |
+
)
|
163 |
+
|
164 |
+
custom_prompt = gr.Textbox(
|
165 |
+
label="βοΈ Custom Prompt",
|
166 |
+
placeholder="Enter your custom prompt here...",
|
167 |
+
lines=2
|
168 |
+
)
|
169 |
+
|
170 |
+
model_choice = gr.Radio(
|
171 |
+
choices=["OpenAI ChatGPT", "Hugging Face Model"],
|
172 |
+
value="OpenAI ChatGPT",
|
173 |
+
label="π€ Model Selection"
|
174 |
+
)
|
175 |
+
|
176 |
+
hf_model = gr.Dropdown(
|
177 |
+
choices=list(HUGGINGFACE_MODELS.keys()),
|
178 |
+
label="π§ Hugging Face Model",
|
179 |
+
visible=False
|
180 |
+
)
|
181 |
+
|
182 |
+
# Right Column - Output
|
183 |
+
with gr.Column(scale=1):
|
184 |
+
with gr.Row():
|
185 |
+
process_button = gr.Button("π Process PDF", variant="primary")
|
186 |
+
|
187 |
+
progress_status = gr.Textbox(
|
188 |
+
label="π Progress",
|
189 |
+
interactive=False
|
190 |
+
)
|
191 |
+
|
192 |
+
generated_prompt = gr.Textbox(
|
193 |
+
label="π Generated Prompt",
|
194 |
+
lines=10
|
195 |
+
)
|
196 |
+
|
197 |
+
summary_output = gr.Textbox(
|
198 |
+
label="π Summary",
|
199 |
+
lines=15
|
200 |
+
)
|
201 |
+
|
202 |
+
with gr.Row():
|
203 |
+
download_prompt = gr.File(
|
204 |
+
label="π₯ Download Prompt"
|
205 |
+
)
|
206 |
+
download_summary = gr.File(
|
207 |
+
label="π₯ Download Summary"
|
208 |
+
)
|
209 |
+
|
210 |
+
# Event Handlers
|
211 |
+
def toggle_hf_model(choice):
|
212 |
+
return gr.update(visible=choice == "Hugging Face Model")
|
213 |
+
|
214 |
+
def handle_authentication(api_key):
|
215 |
+
return authenticate_openai(api_key)
|
216 |
+
|
217 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key):
|
218 |
+
try:
|
219 |
+
if not pdf:
|
220 |
+
return "Please upload a PDF file.", "", "", None, None
|
221 |
+
|
222 |
+
# Extract text
|
223 |
+
text = extract_text_from_pdf(pdf.name)
|
224 |
+
if text.startswith("Error"):
|
225 |
+
return text, "", "", None, None
|
226 |
+
|
227 |
+
# Format content
|
228 |
+
formatted_text = format_content(text, fmt)
|
229 |
+
|
230 |
+
# Split into snippets
|
231 |
+
snippets = split_into_snippets(formatted_text, ctx_size)
|
232 |
+
|
233 |
+
# Process specific snippet or all
|
234 |
+
if snippet_num is not None:
|
235 |
+
if 1 <= snippet_num <= len(snippets):
|
236 |
+
selected_snippets = [snippets[snippet_num - 1]]
|
237 |
+
else:
|
238 |
+
return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None
|
239 |
+
else:
|
240 |
+
selected_snippets = snippets
|
241 |
+
|
242 |
+
# Build prompts
|
243 |
+
default_prompt = "Summarize the following text:"
|
244 |
+
prompts = build_prompts(selected_snippets, default_prompt, prompt)
|
245 |
+
full_prompt = "\n".join(prompts)
|
246 |
+
|
247 |
+
# Generate summary
|
248 |
+
if model_selection == "OpenAI ChatGPT":
|
249 |
+
if not api_key:
|
250 |
+
return "OpenAI API key required.", full_prompt, "", None, None
|
251 |
+
try:
|
252 |
+
openai.api_key = api_key
|
253 |
+
response = openai.ChatCompletion.create(
|
254 |
+
model="gpt-3.5-turbo",
|
255 |
+
messages=[{"role": "user", "content": full_prompt}]
|
256 |
+
)
|
257 |
+
summary = response.choices[0].message.content
|
258 |
+
except Exception as e:
|
259 |
+
return f"OpenAI API error: {str(e)}", full_prompt, "", None, None
|
260 |
+
else:
|
261 |
+
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
262 |
+
|
263 |
+
# Save files for download
|
264 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
265 |
+
prompt_file.write(full_prompt)
|
266 |
+
prompt_path = prompt_file.name
|
267 |
+
|
268 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
269 |
+
summary_file.write(summary)
|
270 |
+
summary_path = summary_file.name
|
271 |
+
|
272 |
+
return "Processing complete!", full_prompt, summary, prompt_path, summary_path
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logging.error(f"Error processing PDF: {e}")
|
276 |
+
return f"Error processing PDF: {str(e)}", "", "", None, None
|
277 |
+
|
278 |
+
# Connect event handlers
|
279 |
+
model_choice.change(
|
280 |
+
toggle_hf_model,
|
281 |
+
inputs=[model_choice],
|
282 |
+
outputs=[hf_model]
|
283 |
+
)
|
284 |
|
285 |
+
auth_button.click(
|
286 |
+
handle_authentication,
|
287 |
+
inputs=[openai_api_key],
|
288 |
+
outputs=[auth_status]
|
289 |
+
)
|
290 |
|
291 |
+
process_button.click(
|
292 |
+
process_pdf,
|
293 |
+
inputs=[
|
294 |
+
pdf_input,
|
295 |
+
format_type,
|
296 |
+
context_size,
|
297 |
+
snippet_number,
|
298 |
+
custom_prompt,
|
299 |
+
model_choice,
|
300 |
+
hf_model,
|
301 |
+
openai_api_key
|
302 |
+
],
|
303 |
+
outputs=[
|
304 |
+
progress_status,
|
305 |
+
generated_prompt,
|
306 |
+
summary_output,
|
307 |
+
download_prompt,
|
308 |
+
download_summary
|
309 |
+
]
|
310 |
+
)
|
311 |
+
|
312 |
+
# Instructions
|
313 |
+
gr.Markdown("""
|
314 |
+
### π Instructions:
|
315 |
+
1. (Optional) Enter your OpenAI API key and authenticate
|
316 |
+
2. Upload a PDF document
|
317 |
+
3. Choose output format and context window size
|
318 |
+
4. Optionally specify a snippet number or custom prompt
|
319 |
+
5. Select between OpenAI ChatGPT or Hugging Face model
|
320 |
+
6. Click 'Process PDF' to generate summary
|
321 |
+
7. Download the generated prompt and summary as needed
|
322 |
+
|
323 |
+
### βοΈ Features:
|
324 |
+
- Support for multiple PDF formats
|
325 |
+
- Flexible text formatting options
|
326 |
+
- Custom prompt creation
|
327 |
+
- Multiple AI model options
|
328 |
+
- Snippet-based processing
|
329 |
+
- Downloadable outputs
|
330 |
+
""")
|
331 |
|
332 |
+
# Launch the interface
|
333 |
if __name__ == "__main__":
|
334 |
+
demo.launch(share=False, debug=True)
|