Spaces:
Running
Running
import os | |
import re | |
import tempfile | |
import requests | |
import gradio as gr | |
from PyPDF2 import PdfReader | |
import openai | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize Hugging Face models | |
HUGGINGFACE_MODELS = { | |
"Phi-3 Mini 128k Instruct by EswardiVI": "eswardivi/Phi-3-mini-128k-instruct", | |
"Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct" | |
} | |
# Utility Functions | |
def extract_text_from_pdf(pdf_path): | |
"""Extract text content from PDF file.""" | |
try: | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page_num, page in enumerate(reader.pages, start=1): | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + "\n" | |
else: | |
logging.warning(f"No text found on page {page_num}.") | |
if not text.strip(): | |
return "Error: No extractable text found in the PDF." | |
return text | |
except Exception as e: | |
logging.error(f"Error reading PDF file: {e}") | |
return f"Error reading PDF file: {e}" | |
def format_content(text, format_type): | |
"""Format extracted text according to specified format.""" | |
if format_type == 'txt': | |
return text | |
elif format_type == 'md': | |
paragraphs = text.split('\n\n') | |
return '\n\n'.join(paragraphs) | |
elif format_type == 'html': | |
paragraphs = text.split('\n\n') | |
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()]) | |
else: | |
logging.error(f"Unsupported format: {format_type}") | |
return f"Unsupported format: {format_type}" | |
def split_into_snippets(text, context_size): | |
"""Split text into manageable snippets based on context size.""" | |
sentences = re.split(r'(?<=[.!?]) +', text) | |
snippets = [] | |
current_snippet = "" | |
for sentence in sentences: | |
if len(current_snippet) + len(sentence) + 1 > context_size: | |
if current_snippet: | |
snippets.append(current_snippet.strip()) | |
current_snippet = sentence + " " | |
else: | |
snippets.append(sentence.strip()) | |
current_snippet = "" | |
else: | |
current_snippet += sentence + " " | |
if current_snippet.strip(): | |
snippets.append(current_snippet.strip()) | |
return snippets | |
def build_prompts(snippets, prompt_instruction, custom_prompt): | |
"""Build formatted prompts from text snippets.""" | |
prompts = [] | |
for idx, snippet in enumerate(snippets, start=1): | |
current_prompt = custom_prompt if custom_prompt else prompt_instruction | |
framed_prompt = f"---\nPart {idx} of {len(snippets)}:\n{current_prompt}\n\n{snippet}\n\nEnd of Part {idx}.\n---" | |
prompts.append(framed_prompt) | |
return prompts | |
def send_to_huggingface(prompt, model_name): | |
"""Send prompt to Hugging Face model.""" | |
try: | |
payload = {"inputs": prompt} | |
response = requests.post( | |
f"https://api-inference.huggingface.co/models/{model_name}", | |
json=payload | |
) | |
if response.status_code == 200: | |
return response.json()[0].get('generated_text', 'No generated text found.') | |
else: | |
error_info = response.json() | |
error_message = error_info.get('error', 'Unknown error occurred.') | |
logging.error(f"Error from Hugging Face model: {error_message}") | |
return f"Error from Hugging Face model: {error_message}" | |
except Exception as e: | |
logging.error(f"Error interacting with Hugging Face model: {e}") | |
return f"Error interacting with Hugging Face model: {e}" | |
def authenticate_openai(api_key): | |
"""Authenticate with OpenAI API.""" | |
if api_key: | |
try: | |
openai.api_key = api_key | |
openai.Model.list() | |
return "OpenAI Authentication Successful!" | |
except Exception as e: | |
logging.error(f"OpenAI API Key Error: {e}") | |
return f"OpenAI API Key Error: {e}" | |
return "No OpenAI API key provided." | |
# Main Interface | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
# Header | |
gr.Markdown("# π Smart PDF Summarizer") | |
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.") | |
# Authentication Section | |
with gr.Row(): | |
with gr.Column(scale=1): | |
openai_api_key = gr.Textbox( | |
label="π OpenAI API Key", | |
type="password", | |
placeholder="Enter your OpenAI API key (optional)" | |
) | |
auth_status = gr.Textbox( | |
label="Authentication Status", | |
interactive=False | |
) | |
auth_button = gr.Button("π Authenticate", variant="primary") | |
# Main Content | |
with gr.Row(): | |
# Left Column - Input Options | |
with gr.Column(scale=1): | |
pdf_input = gr.File( | |
label="π Upload PDF", | |
file_types=[".pdf"] | |
) | |
with gr.Row(): | |
format_type = gr.Radio( | |
choices=["txt", "md", "html"], | |
value="txt", | |
label="π Output Format" | |
) | |
context_size = gr.Slider( | |
minimum=4000, | |
maximum=128000, | |
step=4000, | |
value=32000, | |
label="π Context Window Size" | |
) | |
snippet_number = gr.Number( | |
label="π’ Snippet Number (Optional)", | |
value=None, | |
precision=0 | |
) | |
custom_prompt = gr.Textbox( | |
label="βοΈ Custom Prompt", | |
placeholder="Enter your custom prompt here...", | |
lines=2 | |
) | |
model_choice = gr.Radio( | |
choices=["OpenAI ChatGPT", "Hugging Face Model"], | |
value="OpenAI ChatGPT", | |
label="π€ Model Selection" | |
) | |
hf_model = gr.Dropdown( | |
choices=list(HUGGINGFACE_MODELS.keys()), | |
label="π§ Hugging Face Model", | |
visible=False | |
) | |
# Right Column - Output | |
with gr.Column(scale=1): | |
with gr.Row(): | |
process_button = gr.Button("π Process PDF", variant="primary") | |
progress_status = gr.Textbox( | |
label="π Progress", | |
interactive=False | |
) | |
generated_prompt = gr.Textbox( | |
label="π Generated Prompt", | |
lines=10 | |
) | |
summary_output = gr.Textbox( | |
label="π Summary", | |
lines=15 | |
) | |
with gr.Row(): | |
download_prompt = gr.File( | |
label="π₯ Download Prompt" | |
) | |
download_summary = gr.File( | |
label="π₯ Download Summary" | |
) | |
# Event Handlers | |
def toggle_hf_model(choice): | |
return gr.update(visible=choice == "Hugging Face Model") | |
def handle_authentication(api_key): | |
return authenticate_openai(api_key) | |
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key): | |
try: | |
if not pdf: | |
return "Please upload a PDF file.", "", "", None, None | |
# Extract text | |
text = extract_text_from_pdf(pdf.name) | |
if text.startswith("Error"): | |
return text, "", "", None, None | |
# Format content | |
formatted_text = format_content(text, fmt) | |
# Split into snippets | |
snippets = split_into_snippets(formatted_text, ctx_size) | |
# Process specific snippet or all | |
if snippet_num is not None: | |
if 1 <= snippet_num <= len(snippets): | |
selected_snippets = [snippets[snippet_num - 1]] | |
else: | |
return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None | |
else: | |
selected_snippets = snippets | |
# Build prompts | |
default_prompt = "Summarize the following text:" | |
prompts = build_prompts(selected_snippets, default_prompt, prompt) | |
full_prompt = "\n".join(prompts) | |
# Generate summary | |
if model_selection == "OpenAI ChatGPT": | |
if not api_key: | |
return "OpenAI API key required.", full_prompt, "", None, None | |
try: | |
openai.api_key = api_key | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[{"role": "user", "content": full_prompt}] | |
) | |
summary = response.choices[0].message.content | |
except Exception as e: | |
return f"OpenAI API error: {str(e)}", full_prompt, "", None, None | |
else: | |
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice]) | |
# Save files for download | |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file: | |
prompt_file.write(full_prompt) | |
prompt_path = prompt_file.name | |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file: | |
summary_file.write(summary) | |
summary_path = summary_file.name | |
return "Processing complete!", full_prompt, summary, prompt_path, summary_path | |
except Exception as e: | |
logging.error(f"Error processing PDF: {e}") | |
return f"Error processing PDF: {str(e)}", "", "", None, None | |
# Connect event handlers | |
model_choice.change( | |
toggle_hf_model, | |
inputs=[model_choice], | |
outputs=[hf_model] | |
) | |
auth_button.click( | |
handle_authentication, | |
inputs=[openai_api_key], | |
outputs=[auth_status] | |
) | |
process_button.click( | |
process_pdf, | |
inputs=[ | |
pdf_input, | |
format_type, | |
context_size, | |
snippet_number, | |
custom_prompt, | |
model_choice, | |
hf_model, | |
openai_api_key | |
], | |
outputs=[ | |
progress_status, | |
generated_prompt, | |
summary_output, | |
download_prompt, | |
download_summary | |
] | |
) | |
# Instructions | |
gr.Markdown(""" | |
### π Instructions: | |
1. (Optional) Enter your OpenAI API key and authenticate | |
2. Upload a PDF document | |
3. Choose output format and context window size | |
4. Optionally specify a snippet number or custom prompt | |
5. Select between OpenAI ChatGPT or Hugging Face model | |
6. Click 'Process PDF' to generate summary | |
7. Download the generated prompt and summary as needed | |
### βοΈ Features: | |
- Support for multiple PDF formats | |
- Flexible text formatting options | |
- Custom prompt creation | |
- Multiple AI model options | |
- Snippet-based processing | |
- Downloadable outputs | |
""") | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch(share=False, debug=True) |