File size: 11,401 Bytes
020dd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618fc8b
020dd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
@File    :   metauas.py
@Time    :   2025/03/26 23:46:12
@Author  :   Bin-Bin Gao
@Email   :   [email protected]
@Homepage:   https://csgaobb.github.io/
@Version :   1.0
@Desc    :   some classes and functions for MetaUAS
'''


import os
import random
import kornia as K
import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import tqdm
import time
import cv2

from PIL import Image
from einops import rearrange
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms.functional import pil_to_tensor
from segmentation_models_pytorch.unet.model import UnetDecoder
from segmentation_models_pytorch.fpn.decoder import FPNDecoder
from segmentation_models_pytorch.encoders import get_encoder, get_preprocessing_params

def set_random_seed(seed=233, reproduce=False):
    np.random.seed(seed)
    torch.manual_seed(seed ** 2)
    torch.cuda.manual_seed(seed ** 3)
    random.seed(seed ** 4)

    if reproduce:
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
    else:
        torch.backends.cudnn.benchmark = True 

def normalize(pred, max_value=None, min_value=None):
    if max_value is None or min_value is None:
        return (pred - pred.min()) / (pred.max() - pred.min())
    else:
        return (pred - min_value) / (max_value - min_value)


def apply_ad_scoremap(image, scoremap, alpha=0.5):
    np_image = np.asarray(image, dtype=np.float32)
    scoremap = (scoremap * 255).astype(np.uint8)
    scoremap = cv2.applyColorMap(scoremap, cv2.COLORMAP_JET)
    scoremap = cv2.cvtColor(scoremap, cv2.COLOR_BGR2RGB)
    return (alpha * np_image + (1 - alpha) * scoremap).astype(np.uint8)


def read_image_as_tensor(path_to_image):
    pil_image = Image.open(path_to_image).convert("RGB")
    image_as_tensor = pil_to_tensor(pil_image).float() / 255.0
    return image_as_tensor

def safely_load_state_dict(model, checkpoint):
    model.load_state_dict(torch.load(checkpoint), strict=True)
    return model


class AlignmentModule(nn.Module):
    def __init__(self, input_channels=2048, hidden_channels=256, alignment_type="sa", fusion_policy='cat'):
        super().__init__()
        self.fusion_policy = fusion_policy
        self.alignment_layer = AlignmentLayer(input_channels, hidden_channels, alignment_type=alignment_type)
    
    def forward(self, query_features, prompt_features):
            if isinstance(prompt_features, list):
                aligned_prompt = []
                for i in range(len(prompt_features)):
                    weighted_prompt.append(self.alignment_layer(query_features, prompt_features[i]))
                aligned_prompt = torch.mean(torch.stack(aligned_prompt),0)
                
            else:
                aligned_prompt = self.alignment_layer(query_features, prompt_features)
           
            if self.fusion_policy == 'cat':
                query_features = rearrange(
                    [query_features, aligned_prompt], "two b c h w -> b (two c) h w"
                )
            elif self.fusion_policy == 'add':
                query_features = query_features + aligned_prompt
                
            elif self.fusion_policy == 'absdiff':
                query_features = (query_features - aligned_prompt).abs()
        
            return query_features
        
class AlignmentLayer(nn.Module):
    def __init__(self, input_channels=2048, hidden_channels=256, alignment_type="sa"):
        super().__init__()
        self.alignment_type = alignment_type
        if alignment_type != "na":
            self.dimensionality_reduction = nn.Conv2d(
                input_channels, hidden_channels, kernel_size=1, stride=1, padding=0, bias=True
            )

    def forward(self, query_features, prompt_features):
        # no-alignment
        if self.alignment_type == 'na':
            return prompt_features
        else:
            Q = self.dimensionality_reduction(query_features)
            K = self.dimensionality_reduction(prompt_features)
            V = rearrange(prompt_features, "b c h w -> b c (h w)")

            soft_attention_map = torch.einsum("bcij,bckl->bijkl", Q, K)
            soft_attention_map = rearrange(soft_attention_map, "b h1 w1 h2 w2 -> b h1 w1 (h2 w2)")
            soft_attention_map = nn.Softmax(dim=3)(soft_attention_map)

            # soft-alignment
            if self.alignment_type == 'sa':
                aligned_features = torch.einsum("bijp,bcp->bcij", soft_attention_map, V)
            # hard-alignment
            if self.alignment_type == 'ha':
                max_v, max_index = attention_map.max(dim=-1, keepdim=True)
                hard_attention_map = (attention_map == max_v).float()
                aligned_features = torch.einsum("bijp,bcp->bcij", hard_attention_map, V)

            return aligned_features


class MetaUAS(pl.LightningModule):
    def __init__(self, encoder_name, decoder_name, encoder_depth, decoder_depth, num_alignment_layers, alignment_type, fusion_policy):
        super().__init__()
        
        self.encoder_name = encoder_name
        self.decoder_name = decoder_name 
        self.encoder_depth = encoder_depth
        self.decoder_depth = decoder_depth

        self.num_alignment_layers = num_alignment_layers
        self.alignment_type = alignment_type
        self.fusion_policy = fusion_policy
        
      
        align_input_channels = [448, 160, 56]
        align_hidden_channels = [224, 80, 28]
        encoder_channels = [3, 48, 32, 56, 160, 448] 
        decoder_channels = [256, 128, 64, 64, 48]
        
        self.encoder = get_encoder(
            self.encoder_name,
            in_channels=3,
            depth=self.encoder_depth,
            weights="imagenet",)

        preparams = get_preprocessing_params(
            self.encoder_name, 
            pretrained="imagenet"
            )
        
        self.preprocess = transforms.Normalize(preparams['mean'], preparams['std'])

        self.encoder.eval()
        for param in self.encoder.parameters():
            param.requires_grad = False
        
        if self.decoder_name == "unet":
            encoder_out_channels = encoder_channels[self.encoder_depth-self.decoder_depth:]
            if self.fusion_policy == 'cat':
                num_alignment_layers = self.num_alignment_layers
            elif self.fusion_policy == 'add' or self.fusion_policy == 'absdiff':
                num_alignment_layers = 0

            self.decoder = UnetDecoder(
                encoder_channels=encoder_out_channels,
                decoder_channels=decoder_channels,
                n_blocks= self.decoder_depth,
                attention_type="scse",
                num_coam_layers= num_alignment_layers,
            )
             
        elif self.decoder_name == "fpn":
            encoder_out_channels = encoder_channels
            if self.fusion_policy == 'cat':
                for i in range(self.num_alignment_layers):
                    encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
            
            self.decoder = FPNDecoder(
                encoder_channels= encoder_out_channels,
                encoder_depth=self.encoder_depth,
                pyramid_channels=256,
                segmentation_channels=decoder_channels[-1],
                dropout=0.2,
                merge_policy="add",
            )

        elif self.decoder_name == "fpnadd":
            segmentation_channels = 256 #128
            encoder_out_channels = encoder_channels
            if self.fusion_policy == 'cat':
                for i in range(self.num_alignment_layers):
                    encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
            
            self.decoder = FPNDecoder(
                encoder_channels= encoder_out_channels,
                encoder_depth=self.encoder_depth,
                pyramid_channels=256,
                segmentation_channels=segmentation_channels,
                dropout=0.2,
                merge_policy="add",
            )
        elif self.decoder_name == "fpncat":
            encoder_out_channels = encoder_channels
            segmentation_channels = 256 #128
            if self.fusion_policy == 'cat':
                for i in range(self.num_alignment_layers):
                    encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
            
            self.decoder = FPNDecoder(
                encoder_channels= encoder_out_channels,
                encoder_depth=self.encoder_depth,
                pyramid_channels=256,
                segmentation_channels=segmentation_channels,
                dropout=0.2,
                merge_policy="cat",
            )
             
         
        if self.alignment_type == "sa" or self.alignment_type == "na" or  self.alignment_type == "ha" :
            self.alignment = nn.ModuleList(
                [
                    AlignmentModule(
                        input_channels=align_input_channels[i],
                        hidden_channels=align_hidden_channels[i],
                        alignment_type=self.alignment_type,
                        fusion_policy=self.fusion_policy,
                    )
                    for i in range(self.num_alignment_layers)
                ]
            )
       
        if self.decoder_name == "fpncat":
            self.mask_head = nn.Conv2d(
                segmentation_channels*4,
                1,
                kernel_size=1,
                stride=1,
                padding=0,
            )
        elif self.decoder_name == "fpnadd":
            self.mask_head = nn.Conv2d(
                segmentation_channels,
                1,
                kernel_size=1,
                stride=1,
                padding=0,
            )
        else:
            self.mask_head = nn.Conv2d(
                decoder_channels[-1],
                1,
                kernel_size=1,
                stride=1,
                padding=0,
            )
           
    def forward(self, batch):
        query_input = self.preprocess(batch["query_image"])
        prompt_input = self.preprocess(batch["prompt_image"]) 

        with torch.no_grad():
            query_encoded_features = self.encoder(query_input)
            prompt_encoded_features = self.encoder(prompt_input)
                
        for i in range(len(self.alignment)):
            query_encoded_features[-(i + 1)] = self.alignment[i](query_encoded_features[-(i + 1)], prompt_encoded_features[-(i + 1)])
           
        query_decoded_features = self.decoder(*query_encoded_features[self.encoder_depth-self.decoder_depth:])
        
        if self.decoder_name == "fpn" or self.decoder_name == "fpncat" or self.decoder_name == "fpnadd":
            output = F.interpolate(self.mask_head(query_decoded_features), scale_factor=4, mode="bilinear", align_corners=False) 
            
        elif self.decoder_name == "unet":
            if self.decoder_depth == 4:
                output = F.interpolate(self.mask_head(query_decoded_features), scale_factor=2, mode="bilinear", align_corners=False) 
            if self.decoder_depth == 5:
                if not self.training:
                    output = self.mask_head(query_decoded_features)

        return output.sigmoid()